【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

【答案】(1)證明見解析(2)菱形

【解析】

(1)根據(jù)正方形的性質(zhì)和全等三角形的判定證明即可;
(2)四邊形AECF是菱形,根據(jù)對角線垂直的平行四邊形是菱形即可判斷;

詳證明:(1)∵四邊形ABCD是正方形,
AB=AD,
∴∠ABD=ADB,
∴∠ABE=ADF,
ABEADF

∴△ABE≌△ADF.
(2)如圖,連接AC,


四邊形AECF是菱形.
理由:在正方形ABCD中,
OA=OC,OB=OD,ACEF,
OB+BE=OD+DF,
OE=OF,
OA=OC,OE=OF,
∴四邊形AECF是平行四邊形,
ACEF,
∴四邊形AECF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的外切等腰梯形ABCD的腰長為10,O的半徑為3,求等腰梯形ABCD的面積及下底的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個動點P在平面直角坐標(biāo)系中按箭頭所示方向作折線運動,即第一次從原點運動到(1,1),第二次從(1,1)運動到(20),第三次從(2,0)運動到(3,2),第四次從(32)運動到(4,0),第五次從(4,0)運動到(5,1)……,按這樣的運動規(guī)律,經(jīng)過第2013次運動后,動點P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用6000元購進(jìn)A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤3800(毛利潤=售價-進(jìn)價).這兩種服裝的進(jìn)價,標(biāo)價如表所示.

  

(1)求這兩種服裝各購進(jìn)的件數(shù);

(2)如果A種服裝按標(biāo)價的8折出售,B種服裝按標(biāo)價的7折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出函數(shù)y=﹣x+3的圖象,并利用圖象回答問題:

(1)當(dāng)y0時,x的取值范圍為_____

(2)當(dāng)﹣2x2時,y的取值范圍為_____

(3)圖象與直線yx1的交點坐標(biāo)為______;這兩條直線與y軸圍成的三角形面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx和直線y=﹣x+5相交于點M,直線PQx軸,分別交直線y=﹣x+5和直線yx于點PQ,點Ry軸上一點,若△PQR為等腰直角三角形.求點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)這一推論,他從這一推論出發(fā),利用出入相補(bǔ)原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個推論指(

A. S矩形ABMNS矩形MNDCB. S矩形EBMFS矩形AEFN

C. S矩形AEFNS矩形MNDCD. S矩形EBMFS矩形NFGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(2,2),反比例函數(shù)(x0,k0)的圖象經(jīng)過線段BC的中點D.

(1)求k的值;

(2)若點P(x,y)在該反比例函數(shù)的圖象上運動(不與點D重合),過點PPRy軸于點R,作PQBC所在直線于點Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案