6.如圖,在△ABC中,∠C=90°,∠B=60°,AC=6,斜邊AB的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D,則CD的長為2.

分析 連接DB,根據(jù)三角形內(nèi)角和定理求出∠A,根據(jù)線段的垂直平分線的性質(zhì)得到DA=DB,求出∠CBD=30°,根據(jù)直角三角形的性質(zhì)計(jì)算即可.

解答 解:連接DB,
∵∠C=90°,∠B=60°,
∴∠A=30°,
∵DE是AB的垂直平分線,
∴DA=DB,
∴∠DBA=∠A=30°,
∴∠CBD=30°,
∴CD=$\frac{1}{2}$BD,即CD=$\frac{1}{2}$DA,又AC=6,
∴CD=2,
故答案為:2.

點(diǎn)評(píng) 本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知,如圖,點(diǎn)D在射線AB上,且AD=2,點(diǎn)P是射線AC上的一個(gè)動(dòng)點(diǎn),線段PD的垂直平分線與射線AC交于點(diǎn)E,與∠BAC的平分線交于點(diǎn)F.連結(jié)DF、PF、EF.
(1)當(dāng)DF∥AC時(shí),求證:AD=PF.
(2)當(dāng)∠BAC=60°時(shí),設(shè)AP=x,AF=y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.分式方程$\frac{x}{{x}^{2}-1}$+$\frac{2}{x-1}$=$\frac{2}{x+1}$的解為( 。
A.x=-1B.x=-4C.x=-2D.x=-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:$\sqrt{12}$+|-3|-2cos30°+(-1+$\sqrt{2}$)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,△ABO關(guān)于x軸對(duì)稱,若點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)B的坐標(biāo)為( 。
A.(b,a)B.(-a,b)C.(a,-b)D.(-a,-b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,直線PA∥QB,∠PAB與∠QBA的平分線交于點(diǎn)C,過點(diǎn)C作一條直線l與兩直線PA,QB分別相交于點(diǎn)D,E.
(1)如圖①,當(dāng)直線l與PA垂直時(shí),求證:AD+BE=AB;
(2)如圖②,當(dāng)直線l與PA不垂直且交于點(diǎn)D,E都在AB同側(cè)時(shí),CD中的結(jié)論是否成立?如果成立,請(qǐng)證明:如不成立,請(qǐng)說明理由.
(3)當(dāng)直線l與PA不垂直且交于點(diǎn)D,E都在AB異側(cè)時(shí),(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)證明; 如果不成立,請(qǐng)寫出AD,BE,AB之間的數(shù)量關(guān)系(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.(1)計(jì)算:($\sqrt{2}$-$\sqrt{3}$)2+(2$\sqrt{3}$+$\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$)
(2)因式分解:9a2(x-y)+4b2(y-x)
(3)先化簡,再求值:$\frac{a-2}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$),其中a2-a-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)(-1,y1),(2,y2)都在直線y=$\frac{1}{2}$x+b上,則y1,y2大小關(guān)系是( 。
A.y1>y2B.y1=y2C.y1<y2D.不能比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.在-4,0,2.5,|-3|這四個(gè)數(shù)中,最大的數(shù)是(  )
A.-4B.0C.2.5D.|-3|

查看答案和解析>>

同步練習(xí)冊(cè)答案