【題目】如圖,在四邊形ABCD中,∠C=50°,∠B=∠D=90°,E,F分別是BC,DC上的點,當△AEF的周長最小時,∠EAF=________度。
【答案】80°
【解析】
據要使△AEF的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關于BC和CD的對稱點A′,A″,即可得出∠A′+∠A″=∠HAA′=50°,進而得出∠EAB+∠FAD=50°,即可得出答案.
解:作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于E,交CD于F,則A′A″即為△AEF的周長最小值.作DA延長線AH,
∵∠C=50°,
∴∠DAB=130°,
∴∠HAA′=50°,
∴∠A′+∠A″=∠HAA′=50°,
∵∠A′=∠EAB,∠A″=∠FAD,
∴∠EAB+∠FAD=50°,
∴∠EAF=130°-50°=80°,
故答案為:80°.
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象經過點,對稱軸是經過且平行于軸的直線.
求、的值;
如圖,一次函數的圖象經過點,與軸相交于點,與二次函數的圖象相交于另一點,點在點的右側,,求一次函數的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形中,,,,相交于點.
求邊的長;
如圖,將一個足夠大的直角三角板角的頂點放在菱形的頂點處,繞點左右旋轉,其中三角板角的兩邊分別與邊,相交于點,,連接與相交于點.
①判斷是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點為邊的四等分點時,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABO中,∠BOA=90°,∠BAO=30°.以AB為一邊向上作等邊三角形ABE,點D為OA垂直平分線上的一點,且AD⊥AB,連接BD、OD、OE.
(1)判斷△ADO的形狀,并說明理由;
(2)求證:BD=OE
(3)在射線BA上有一動點P,若△PAO為等腰三角形,直接寫出∠AOP的度數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個均勻的立方體骰子六個面上標有數1,2,3,4,5,6,若以連續(xù)擲兩次骰子得到的數作為點的坐標,則點落在反比例函數圖象與坐標軸所圍成區(qū)域內(含落在此反比例函數的圖象上的點)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校初三年級(1)班要舉行一場畢業(yè)聯歡會.規(guī)定每個同學分別轉動下圖中兩個可以自由轉動的均勻轉盤A、B(轉盤A被均勻分成三等份.每份分別標上1.2,3三個釹宇.轉盤B被均勻分成二等份.每份分別標上4,5兩個數字).若兩個轉盤停止后指針所指區(qū)域的數字都為偶數(如果指針恰好指在分格線上.那么重轉直到指針指向某一數字所在區(qū)域為止).則這個同學要表演唱歌節(jié)目.請求出這個同學表演唱歌節(jié)目的概率(要求用畫樹狀圖或列表方法求解)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
若一個整數能表示成a2+b2(a、b是整數)的形式,則稱這個數為“平和數”,例如5是“平和數”,因為5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x, y是整數),我們稱M也是“平和數”.
(1)請你寫一個小于5的“平和數”,并判斷34是否為“平和數”.
(2)已知S=x2+9y2+6x﹣6y+k(x,y是整數,k是常數,要使S為“平和數”,試求出符合條件的一個k值,并說明理由.
(3)如果數m,n都是“平和數”,試說明也是“平和數”.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】悅達汽車4S店“十一”黃金周銷售某種型號汽車,該型號汽車的進價為30萬元/輛,若黃金周期間銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據市場調查,黃金周期間銷售量不會突破30臺.已知該型號汽車的銷售價為32萬元/輛,悅達汽車4S店計劃黃金周期間銷售利潤25萬元,那么需售出多少輛汽車?(注:銷售利潤=銷售價﹣進價)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com