已知:如圖,在正方形ABCD中,F(xiàn)是AD的中點(diǎn),BF與AC交于點(diǎn)G,則△BFC與四邊形CGFD的面積之比是______.
∵F是AD的中點(diǎn),
∴AF=
1
2
AD=
1
2
BC,
設(shè)正方形的邊長(zhǎng)是a,則△BFC的面積是
1
2
a2,△ABC的面積是
1
2
a2,
AF=
a
2
,S△ABF=
1
2
×
a
2
×a=
a2
4

FG
BG
=
1
2
,
∴S△AFG=
1
3
S△AFB=
a2
12

∴四邊形CGFD的面積a2-
1
2
a2-
a2
12
=
5a2
12
,
∴△BFC與四邊形CGFD的面積之比是6:5.
故答案為:6:5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,平面直角坐標(biāo)系xOy中,正方形ABCD的邊長(zhǎng)為4,它的頂點(diǎn)A在x軸的正半軸上運(yùn)動(dòng),頂點(diǎn)D在y軸的正半軸上運(yùn)動(dòng)(點(diǎn)A,D都不與原點(diǎn)重合),頂點(diǎn)B,C都在第一象限,且對(duì)角線AC,BD相交于點(diǎn)P,連接OP.
(1)當(dāng)OA=OD時(shí),點(diǎn)D的坐標(biāo)為_(kāi)_____,∠POA=______°;
(2)當(dāng)OA<OD時(shí),求證:OP平分∠DOA;
(3)設(shè)點(diǎn)P到y(tǒng)軸的距離為d,則在點(diǎn)A,D運(yùn)動(dòng)的過(guò)程中,d的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為m,△BPC是等邊三角形,則△CDP的面積為_(kāi)_____(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三個(gè)邊長(zhǎng)分別為10,6,4的正方形如圖排列(點(diǎn)A,B,E,H在同一條直線上),DH交EF于R,則線段RN的值為( 。
A.1B.2C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)學(xué)課上,李老師出示了這樣一道題目:如圖1,正方形ABCD的邊長(zhǎng)為12,P為邊BC延長(zhǎng)線上的一點(diǎn),E為DP的中點(diǎn),DP的垂直平分線交邊DC于M,交邊AB的延長(zhǎng)線于N.當(dāng)CP=6時(shí),EM與EN的比值是多少?
經(jīng)過(guò)思考,小明展示了一種正確的解題思路:過(guò)E作直線平行于BC交DC,AB分別于F,G,如圖2,則可得:
DF
FC
=
DE
EP
,因?yàn)镈E=EP,所以DF=FC.可求出EF和EG的值,進(jìn)而可求得EM與EN的比值.
(1)請(qǐng)按照小明的思路寫(xiě)出求解過(guò)程.
(2)小東又對(duì)此題作了進(jìn)一步探究,得出了DP=MN的結(jié)論,你認(rèn)為小東的這個(gè)結(jié)論正確嗎?如果正確,請(qǐng)給予證明;如果不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)O(0,0),B(0,1)是正方形OBB1C的兩個(gè)頂點(diǎn),以對(duì)角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對(duì)角線OB2為一邊作正方形OB2B3C2,依次下去,則點(diǎn)B7的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD,E是BC中點(diǎn),∠AEF=90°,∠1=∠2
(1)線段AE與EF的數(shù)量關(guān)系為_(kāi)_____
(2)在線段BC上,若E不是BC中點(diǎn),上述關(guān)系是否成立?若成立,加以證明;若不成立,說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)圖1中,若G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖2,在直角梯形ABCD中,ADBC(BC>AD),∠B=90°,AB=BC=6,E是AB上一點(diǎn),且∠DCE=45°,BE=2,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖.邊長(zhǎng)為1的兩個(gè)正方形互相重合,按住其中一個(gè)不動(dòng),將另一個(gè)繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則這兩個(gè)正方形重疊部分的面積是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案