(2010•石景山區(qū)一模)我們知道三角形三條中線的交點叫做三角形的重心.經(jīng)過證明我們可得三角形重心具備下面的性質(zhì):重心到頂點的距離與重心到該頂點對邊中點的距離之比為2﹕1.請你用此性質(zhì)解決下面的問題.
已知:如圖,點O為等腰直角三角形ABC的重心,∠CAB=90°,直線m過點O,過A、B、C三點分別作直線m的垂線,垂足分別為點D、E、F.
(1)當直線m與BC平行時(如圖1),請你猜想線段BE、CF和AD三者之間的數(shù)量關系并證明;
(2)當直線m繞點O旋轉(zhuǎn)到與BC不平行時,分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請給予證明;若不成立,線段AD、BE、CF三者之間又有怎樣的數(shù)量關系?請寫出你的結(jié)論,不需證明.

【答案】分析:(1)延長AO交BC于M點,由O為等腰直角三角形ABC的重心可得AO=2MO;再通過證明BCFE為矩形,可得BE=MO=CF,即可得AD=EB+CF;
(2)連接AO并延長交BC于點G,過G做GH⊥EF于H,由重心可得AO=2MO;再通過證明△AOD∽△GOH得AD=2HG;然后證得H為EF的中點,據(jù)中位線定理HG=(EB+CF),即可得AD=EB+CF;
(3)圖3不成立,CF-BE=AD.
解答:(1)猜想:BE+CF=AD(1分)
證明:如圖,延長AO交BC于M點,
∵點O為等腰直角三角形ABC的重心
∴AO=2OM且AM⊥BC
又∵EF∥BC∴AM⊥EF
∵BE⊥EF,CF⊥EF
∴EB∥OM∥CF
∴EB=OM=CF
∴EB+CF=2OM=AD.(3分)

(2)圖2結(jié)論:BE+CF=AD
證明:連接AO并延長交BC于點G,
過G做GH⊥EF于H,
由重心性質(zhì)可得AO=2OG,
∵∠ADO=∠OHG=90°,∠AOD=∠HOG,
∴△AOD∽△GOH,
∴AD=2HG,(5分)
∵O為重心,
∴G為BC中點,
∵GH⊥EF,BE⊥EF,CF⊥EF,
∴EB∥HG∥CF,
∴H為EF中點,
∴HG=(EB+CF),
∴EB+CF=AD(7分)

(3)CF-BE=AD.(8分)
點評:本題主要考查三角形相似的判定及性質(zhì),涉及到中位線定理、重心的性質(zhì)、矩形的性質(zhì)等知識點,正確作出輔助線是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知:如圖,拋物線y=ax2-5ax+b+與直線y=x+b交于點A(-3,0)、點B,與y軸交于點C.
(1)求拋物線與直線的解析式;
(2)在直線AB上方的拋物線上有一點D,使得△DAB的面積是8,求點D的坐標;
(3)若點P是直線x=1上一點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知關于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求證:不論m取何值時,方程總有兩個不相等的實數(shù)根.
(2)若直線y=(m-1)x+3與函數(shù)y=x2+m的圖象C1的一個交點的橫坐標為2,求關于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的條件下,將拋物線y=x2-(m-1)x+m-3繞原點旋轉(zhuǎn)180°,得到圖象C2,點P為x軸上的一個動點,過點P作x軸的垂線,分別與圖象C1、C2交于M、N兩點,當線段MN的長度最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知:△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC向右平移2個單位得到△A1B1C1,請直接寫出點B1的坐標:______;
(2)將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°得到△A2B2C2,求直線A2C2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市石景山區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•石景山區(qū)一模)已知:如圖1,等邊△ABC為2,一邊在x上且A(1-,0),AC交y軸于點,過點E作EF∥AB交BC于點F.
(1)直接寫出點B、C的坐標;
(2)若直線y=kx-1(k≠0)將四邊形EABF的面積等分,求k的值;
(3)如圖2,過點A、B、C線與y軸交于點D,M為線段OB上的一個動點,過x軸上一點G(-2,0)作DM的垂線,垂足為H,直線GH交y軸于點N,當M在線段OB上運動時,現(xiàn)給出兩個結(jié)論:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一個是正確的,請你判斷哪個結(jié)論正確,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)(1)已知:如圖1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,點E為AB中點,PE⊥AB交CD的延長線于P,猜想:∠PAC+∠PBC=______°(直接寫出結(jié)論,不需證明).
(2)已知:如圖2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,點E為AB中點,PE⊥AB交CD的延長線于P,(1)中結(jié)論是否成立,若成立,請證明;若不成立請說明理由.

查看答案和解析>>

同步練習冊答案