【題目】已知二次函數(shù)的圖象如圖,分析下列四個(gè)結(jié)論:①②③④其中正確的結(jié)論有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
由拋物線圖像可知,a<0,c>0,–1<<0,即b<0,故abc>0,①正確;
圖像根x軸有兩個(gè)交點(diǎn),故b2-4ac>0,即4ac- b2<0,②正確;
當(dāng)x=-2時(shí),y<0,即4a-2b+c<0①,當(dāng)x=1時(shí),y<0,即a+b+c<0②,①+2②得2a+c<0,
∵a<0,
∴3a+c<0,故③錯(cuò)誤;
當(dāng)x=1時(shí),y=a+b+c<0,當(dāng)x=-1時(shí),y=a-b+c>0
∴(a+b+c)(a+c-b)<0,即(a+c)2<b2,故④正確.
由拋物線圖像可知,a<0,c>0,–1<<0,即b<0,故abc>0,①正確;
圖像根x軸有兩個(gè)交點(diǎn),故b2-4ac>0,即4ac- b2<0,②正確;
當(dāng)x=-2時(shí),y<0,即4a-2b+c<0①,當(dāng)x=1時(shí),y<0,即a+b+c<0②,①+2②得2a+c<0,
∵a<0,
∴3a+c<0,故③錯(cuò)誤;
當(dāng)x=1時(shí),y=a+b+c<0,當(dāng)x=-1時(shí),y=a-b+c>0
∴(a+b+c)(a+c-b)<0,即(a+c)2<b2,故④正確,故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.
求證:AD·BC=AP·BP.
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;
(2)如圖②,△ABC中AB=4,AC=3,BC=6,D是△ABC中AC邊上的點(diǎn),AD=2,過點(diǎn)D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點(diǎn)為點(diǎn)P,使其所分的一個(gè)三角形與△ABC相似,并求出DP的長;
(3)如圖③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點(diǎn)P.N分別在邊CB.CA上,若較大正方形的邊長為a,請用含a的代數(shù)式表示較小正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=" 3" cm,BC=" 4" cm.點(diǎn)P從點(diǎn)A出發(fā),以1 cm/s的速度沿AB運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以2 cm/s的速度沿BC運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)試寫出△PBQ的面積 S (cm2)與動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間 t (s)之間的函數(shù)表達(dá)式;
(2)運(yùn)動(dòng)時(shí)間 t 為何值時(shí),△PBQ的面積最大?最大值是多少?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的網(wǎng)格中,每個(gè)小方格都是邊長為1的正方形,B點(diǎn)的坐標(biāo)為(-1,-1).
(1)把格點(diǎn)△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)90°后得到△A1BC1,請畫出△A1BC1,并寫出點(diǎn)A1的坐標(biāo);
(2)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的相似之比為1:2,請?jiān)谙旅婢W(wǎng)格內(nèi)畫出△AB2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)將△ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫出平移后的△A1B1C1.
(2)作△ABC關(guān)于坐標(biāo)原點(diǎn)成中心對稱的△A2B2C2.
(3)求B1的坐標(biāo) C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)坐標(biāo)分別為(﹣1,2),(2,3),把線段AB繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A'B',點(diǎn)A的對應(yīng)點(diǎn)為A'.
(1)畫出線段A'B',并寫出點(diǎn)A',B'的坐標(biāo);
(2)根據(jù)(1)中的變化規(guī)律,把OM繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到ON,則點(diǎn)M(m,n)的對應(yīng)點(diǎn)N的坐標(biāo)是( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從A出發(fā)沿著AC邊以4cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=135°,端點(diǎn)為A的射線l∥CB,點(diǎn)A繞射線l上的某點(diǎn)D旋轉(zhuǎn)一周所形成的圖形為F,點(diǎn)B在圖形F上.
(1)利用尺規(guī)作圖確定點(diǎn)D的位置;
(2)判斷直線BC與圖形F的公共點(diǎn)個(gè)數(shù),并說明理由;
(3)若AD=2,∠C=15°,求直線AC被圖形F所截得的線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com