【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F.
(1)求證:AE為⊙O的切線.
(2)當(dāng)BC=8,AC=12時(shí),求⊙O的半徑.
(3)在(2)的條件下,求線段BG的長.
【答案】(1)證明見解析;(2)3;(3)2.
【解析】試題分析:(1)連接OM.利用角平分線的性質(zhì)和平行線的性質(zhì)得到AE⊥OM后即可證得AE是⊙O的切線;
(2)設(shè)⊙O的半徑為R,根據(jù)OM∥BE,得到△OMA∽△BEA,利用平行線的性質(zhì)得到,即可解得R=3,從而求得⊙O的半徑為3;
(3)過點(diǎn)O作OH⊥BG于點(diǎn)H,則BG=2BH,根據(jù)∠OME=∠MEH=∠EHO=90°,得到四邊形OMEH是矩形,從而得到HE=OM=3和BH=1,證得結(jié)論BG=2BH=2.
試題解析:(1)證明:連接OM.
∵AC=AB,AE平分∠BAC,
∴AE⊥BC,CE=BE=BC=4,
∵OB=OM,
∴∠OBM=∠OMB,
∵BM平分∠ABC,
∴∠OBM=∠CBM,
∴∠OMB=∠CBM,
∴OM∥BC
又∵AE⊥BC,
∴AE⊥OM,
∴AE是⊙O的切線;
(2)設(shè)⊙O的半徑為R,
∵OM∥BE,
∴△OMA∽△BEA,
∴即,
解得R=3,
∴⊙O的半徑為3;
(3)過點(diǎn)O作OH⊥BG于點(diǎn)H,則BG=2BH,
∵∠OME=∠MEH=∠EHO=90°,
∴四邊形OMEH是矩形,
∴HE=OM=3,
∴BH=1,
∴BG=2BH=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
在等腰三角形ABC中,,分別以AB和AC為斜邊,向的外側(cè)作等腰直角三角形,如圖1所示,其中于點(diǎn)F,于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME.
填空:線段AF,AG,AB之間的數(shù)量關(guān)系是______;
線段MD,ME之間的數(shù)量關(guān)系是______.
拓展探究
在任意三角形ABC中,分別以AB和AC為斜邊向的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量關(guān)系和位置關(guān)系?并說明理由;
解決問題
在任意三角形ABC中,分別以AB和AC為斜邊,向的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,若,請直接寫出線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
學(xué)習(xí)了無理數(shù)后,某數(shù)學(xué)興趣小組開展了一次探究活動(dòng):估算的近似值.
小明的方法:
∵<<,
設(shè)=3+k(0<k<1).
∴.
∴13=9+6k+k2.
∴13≈9+6k.
解得 k≈.
∴≈3+≈3.67.
問題:
(1)請你依照小明的方法,估算的近似值;
(2)請結(jié)合上述具體實(shí)例,概括出估算的公式:已知非負(fù)整數(shù)a、b、m,若a<<a+1,且m=a2+b,則≈ (用含a、b的代數(shù)式表示);
(3)請用(2)中的結(jié)論估算的近似值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請仔細(xì)觀察圖中等邊三角形圖形的變化規(guī)律,寫出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點(diǎn)到三邊距離的數(shù)學(xué)事實(shí):_____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:
(1)為進(jìn)一步打造“宜居北京”,某區(qū)擬在新竣工的矩形廣場的內(nèi)部修建一個(gè)音樂噴泉,要求音樂噴泉 到廣場的兩個(gè)入口 , 的距離相等,且到廣場管理處 的距離等于 和 之間距離的一半,,, 的位置如圖所示.請?jiān)诖痤}卷的原圖上利用尺規(guī)作圖作出音樂噴泉 的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)
(2)如圖,兩條公路 和 相交于 點(diǎn),在 的內(nèi)部有工廠 和 ,現(xiàn)要修建一個(gè)貨站 ,使貨站 到兩條公路 , 的距離相等,且到兩工廠 , 的距離相等,用尺規(guī)作出貨站 的位置.(要求:不寫作法,保留作圖痕跡,必須用鉛筆作圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角尺畫圖:
(1)補(bǔ)全△A′B′C′
(2)畫出AC邊上的中線BD;
(3)畫出AC邊上的高線BE;
(4)求△ABD的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,點(diǎn)E為線段AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_____厘米/秒時(shí),能夠使△BPE與以C、P、Q三點(diǎn)所構(gòu)成的三角形全等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com