【題目】(定義)在平面直角坐標(biāo)系中,對(duì)于函數(shù)圖象的橫寬、縱高給出如下定義:當(dāng)自變量x范圍內(nèi)時(shí),函數(shù)值y滿(mǎn)足.那么我們稱(chēng)b-a為這段函數(shù)圖象的橫寬,稱(chēng)d-c為這段函數(shù)圖象的縱高.縱高與橫寬的比值記為k即:

(示例)如圖1,當(dāng)時(shí);函數(shù)值y滿(mǎn)足,那么該段函數(shù)圖象的橫寬為2--1=3,縱高為4-1=3.則

(應(yīng)用)(1)當(dāng)時(shí),函數(shù)的圖象橫寬為 ,縱高為

2)已知反比例函數(shù),當(dāng)點(diǎn)M(3,4)和點(diǎn)N在該函數(shù)圖象上,且MN段函數(shù)圖象的縱高為2時(shí),求k的值.

3)已知二次函數(shù)的圖象與x軸交于A點(diǎn),B點(diǎn).

①若m=1,是否存在這樣的拋物線(xiàn)段,當(dāng)()時(shí),函數(shù)值滿(mǎn)足若存在,請(qǐng)求出這段函數(shù)圖象的k值;若不存在,請(qǐng)說(shuō)明理由.

②如圖2,若點(diǎn)P在直線(xiàn)y=x上運(yùn)動(dòng),以點(diǎn)P為圓心,為半徑作圓,當(dāng)AB段函數(shù)圖象的k=1時(shí),拋物線(xiàn)頂點(diǎn)恰好落在上,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

【答案】12,4;(2,2;(3)①存在,k=3;②

【解析】

1)當(dāng)時(shí),函數(shù)的函數(shù)值y滿(mǎn)足

從而可以得出橫寬和縱高;

2)由題中MN段函數(shù)圖象的縱高為2,進(jìn)而進(jìn)行分類(lèi)討論Ny值為2以及6的情況,再根據(jù)題中對(duì)k值定義的公式進(jìn)行計(jì)算即可;

3)①先求出函數(shù)的解析式及對(duì)稱(chēng)軸及最大值,根據(jù)函數(shù)值滿(mǎn)足確定b的取值范圍,并判斷此時(shí)函數(shù)的增減性,確定兩個(gè)端點(diǎn)的坐標(biāo),代入函數(shù)解析式求解即可;

②先求出A、B的坐標(biāo)及頂點(diǎn)坐標(biāo),根據(jù)k=1求出m的值,分兩種情況討論即可.

1)當(dāng)時(shí),函數(shù)的函數(shù)值y滿(mǎn)足,

從而可以得出橫寬為,縱高為

故答案為:2,4;

2)將M3,4)代入,得n=12,

縱高為2,

y=2,得x=6;令y=6x=2,

,

.

3)①存在,

,

解析式可化為

當(dāng)x=2時(shí),y最大值為4,

,解得,

當(dāng)時(shí),圖像在對(duì)稱(chēng)軸左側(cè),

yx的增大而增大,

當(dāng)x=a時(shí),y=2a;當(dāng)x=b時(shí),y=3b,將分別代入函數(shù)解析式,

解得()(),

,,,理由是:

A0,0),B4,0),頂點(diǎn)K2,4m),

AB段函數(shù)圖像的k=1,

m=1-1,

二次函數(shù)為,過(guò)頂點(diǎn)KP點(diǎn)分別作x軸、y軸的垂線(xiàn),交點(diǎn)為H.

i)若二次函數(shù)為,

如圖1,設(shè)P的坐標(biāo)為(xx),則KH=,PH=,

中,,

解得,

ii)若二次函數(shù)為

如圖2,設(shè)P的坐標(biāo)為(xx),則,

中,

,解得x=-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長(zhǎng)線(xiàn)于點(diǎn)

1)觀察猜想:線(xiàn)段與線(xiàn)段的數(shù)量關(guān)系是

2)探究證明:如圖2,移動(dòng)三角板,使頂點(diǎn)始終在正方形的對(duì)角線(xiàn)上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明:若不成立.請(qǐng)說(shuō)明理由:

3)拓展延伸:如圖3,將(2)中的正方形改為矩形,且使三角板的一邊經(jīng)過(guò)點(diǎn),其他條件不變,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yx2+bx的對(duì)稱(chēng)軸為x1,若關(guān)于x的一元二次方程x2+bxt0(為實(shí)數(shù))在﹣1x4的范圍內(nèi)有解,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,半徑為1的動(dòng)圓圓心MA點(diǎn)出發(fā),沿著AB方向以1個(gè)單位長(zhǎng)度/每秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)B出發(fā),沿著BD方向也以1個(gè)單位長(zhǎng)度/每秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤2.5),以點(diǎn)N為圓心,NB的長(zhǎng)為半徑的⊙NBD,AB的交點(diǎn)分別為EF,連結(jié)EF,ME

1)①當(dāng)t   秒時(shí),⊙N恰好經(jīng)過(guò)點(diǎn)M;②在運(yùn)動(dòng)過(guò)程中,當(dāng)⊙MABD的邊相切時(shí),t   秒;

2)當(dāng)⊙M經(jīng)過(guò)點(diǎn)B時(shí),①求NAD的距離;②求⊙NAD截得的弦長(zhǎng);

3)若⊙N與線(xiàn)段ME只有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-23),B(-4,1),C(-1,2)

1)畫(huà)出以點(diǎn)O為旋轉(zhuǎn)中心,將ABC順時(shí)針旋轉(zhuǎn)90°得到A'B'C'

2)求點(diǎn)C在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線(xiàn)AB相切時(shí),點(diǎn)P的橫坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:拋物線(xiàn)x軸于AC兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.

(1)求二次函數(shù)解析式;

(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過(guò)MNx軸的垂線(xiàn)交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;

(3) 拋物線(xiàn)對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABE中,∠B90°,以AB為直徑的OAE于點(diǎn)CCE的垂直平分線(xiàn)FDBE于點(diǎn)D,連接CD

1)判斷CDO的位置關(guān)系,并證明;

2)若AC6CE8,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尺規(guī)作圖:已知△ABC,如圖.

1)求作:△ABC的外接圓O;

2)若AC4,∠B30°,則△ABC的外接圓O的半徑為   

查看答案和解析>>

同步練習(xí)冊(cè)答案