如圖,把一塊含45°的直角三角板AOB放置在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,2),直線x=2交x軸于點(diǎn)B.P為線段AB上一動點(diǎn),作直線PC⊥PO,交直線x=2于點(diǎn)C.過P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=2于點(diǎn)N.
(1)填空:∠NPB=______度;
(2)當(dāng)點(diǎn)C在第一象限時(shí),
①試判斷PO與PC的大小關(guān)系,并加以證明;
②設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng)點(diǎn)P在線段AB上移動時(shí),點(diǎn)C也隨之在直線x=2上移動,以點(diǎn)B為圓心,BC長為半徑作⊙B,求線段PN與⊙B有一個(gè)交點(diǎn)時(shí),t的范圍.

【答案】分析:(1)根據(jù)矩形的性質(zhì)求出MN∥OB,求出∠NPB=∠ABO即可;
(2)①證等腰△AOB、△AMP、△PNB,推出PN=BN=OM,推出∠NPC=∠MOP,證△OPM≌△PCN即可;②求出AM、OM,計(jì)算出矩形的面積減去兩個(gè)△MOP的面積即可;
(3)①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),求出P的坐標(biāo);
②當(dāng)點(diǎn)P恰好在⊙B上時(shí),點(diǎn)C在第四象限,此時(shí)BP=BC,求出m,求出PM,OM即可;當(dāng)MN與⊙B相切時(shí),證△OPM≌△PCN,推出PC=OP,求出PM、OM即可.
解答:(1)解:∵M(jìn)N∥OB,OA∥BN,∠AOB=90°,
∴四邊形MOBN是矩形,
∴MN∥OB,
∴∠NPB=∠ABO=45°,
故答案為:45.

(2)①PO=PC;
證明:
∵OM∥BN,MN∥OB,
∴四邊形OBNM是矩形,
∵∠AOB=90°,OA=OB,
∴△AOB、△AMP、△PNB是等腰直角三角形,
∴PN=BN=OM,
∵∠MPO+∠NPC=90°,∠MPO+∠MOP=90°,
∴∠NPC=∠MOP,
又∠OMP=∠PNC=90°,
∴△OPM≌△PCN,
∴PO=PC.

②依題意可得:,

=

(3)①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)P、M、A三點(diǎn)重合,點(diǎn)C、N重合,由PC⊥BC,則線段PN與⊙B相切,即PN與⊙B有交點(diǎn),此時(shí)PC=2,P(0,2);
②當(dāng)點(diǎn)P恰好在⊙B上時(shí),點(diǎn)C在第四象限,此時(shí)BP=BC,
,即
∴m=2,
,

當(dāng)MN與⊙B相切時(shí),此時(shí)BC=BN=PN,
同理可證得:△OPM≌△PCN,則PC=OP,PN=OM,NC=MP,則MP+PN=CN+PN=3PN=MN,
,,∴
綜上,當(dāng)t=0或時(shí),線段PN與⊙B有一個(gè)交點(diǎn).
點(diǎn)評:本題主要考查對等腰直角三角形,矩形的性質(zhì),全等三角形的性質(zhì)和判定,直線與圓的位置關(guān)系等知識點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把一塊含45°的直角三角板AOB放置在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,2),直線x=2交x軸于點(diǎn)B.P為線段AB上一動點(diǎn),作直線PC⊥PO,交直線x=2于點(diǎn)C.過P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=2于點(diǎn)N.
(1)填空:∠NPB=
 
度;
(2)當(dāng)點(diǎn)C在第一象限時(shí),
①試判斷PO與PC的大小關(guān)系,并加以證明;
②設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng)點(diǎn)P在線段AB上移動時(shí),點(diǎn)C也隨之在直線x=2上移動,以點(diǎn)B為圓心精英家教網(wǎng),BC長為半徑作⊙B,求線段PN與⊙B有一個(gè)交點(diǎn)時(shí),t的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高淳縣一模)如圖,把一塊含45°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對邊上,則∠1+∠2=
45
45
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把一塊含45°角的三角板的直角頂點(diǎn)靠在長尺(兩邊a∥b)的一邊b上,若∠1=30°,則三角板的斜邊與長尺的另一邊a的夾角∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇省太倉市七年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,把一塊含45°角的三角板的直角頂點(diǎn)靠在長尺(兩邊a∥b)的一邊b上,若∠1=30°,則三角板的斜邊與長尺的另一邊a的夾角∠2的度數(shù)為(       )

A.10°           B.15°             C.30°          D.35°

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇省太倉市七年級期中考試數(shù)學(xué)卷(解析版) 題型:選擇題

如圖,把一塊含45°角的三角板的直角頂點(diǎn)靠在長尺(兩邊ab)的一邊b上,若∠1=30°,則三角板的斜邊與長尺的另一邊a的夾角∠2的度數(shù)為( ▲ )

A.10°             B.15°             C.30°          D.35°

 

查看答案和解析>>

同步練習(xí)冊答案