【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,4).

(1)畫出ABC關于x軸對稱的A1B1C1,并寫出點A1的坐標A1 ________________

(2)畫出A1B1C1繞原點O旋轉180°后得到的A2B2C2,并寫出點A2的坐標A2__________________

(3) ABC是否為直角三角形?答_________(填是或者不是).

(4)利用格點圖,畫出BC邊上的高AD,并求出AD的長,AD=_____________.

【答案】 (2.-4) (-2,4) 不是

【解析】試題分析:(1)分別找出A、B、C三點關于x軸的對稱點,再順次連接,然后根據(jù)圖形寫出A點坐標;

(2)將A1B1C1中的各點A1、B1、C1繞原點O旋轉180°后,即A2B2C2A1B1C1關于點O成中心對稱,得到相應的對應點A2、B2C2,連接各對應點即得A2B2C2;

(3)根據(jù)勾股定理逆定理解答即可;

(4)連接BD,過點AAHBDBC與點H,然后利用面積法求AH的長度即可.

解:(1)如圖所示:點A1的坐標(2,-4);

(2)如圖所示,點A2的坐標(-2,4);

(3)∵AC2=32+12=10, AB2=22+12=5, BC2=42+12=17,

AC2+ AB2 BC2,

ABC不是直角三角形;

(4)連接BD,過點AAHBDBC與點H.

BB1=BE, ∠BB1D=∠BEC,B1D=CE,

∴△BB1D=△BEC,

∴∠CBE=∠DBB1.

∵∠DBE=∠DBB1=90°,

∴∠DBE=∠CBE =90°,

BDBC,

AHBC.

BC2=42+12=17,

BC=.

SABC=4×2-×2×1-×3×1-×4×1=,

BC·AH=,

AH=7,

AH= .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA6 cmCOB的中點,∠AOB120°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtBOARtCOA的斜邊在x軸上,BA6A10,0),ACOB相交于點E,且CACO,連接BC,下列判斷一定正確的是( 。

ABE∽△OCE;②C55);③BC;④SABC3

A. ①③ B. ②④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣23).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于AB兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、B、C的坐標;

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC,CACB6cmAB8cm,點OABC內一點(點O不在ABC邊界上).請你運用圖形旋轉和兩點之間線段最短等數(shù)學知識、方法,求出OA+OB+OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,AB=3,EAD邊上的一點(EA、D不重合),以BE為邊畫正方形BEFG,邊EF與邊CD交于點H.

(1)E為邊AD的中點時,求DH的長;

(2)DE=x,CH=y,yx之間的函數(shù)關系式,并求出y的最小值;

(3)DE=,將正方形BEFG繞點E逆時針旋轉適當角度后得到正方形B'EF'G',如圖2,邊EF'CD交于點N、EB'BC交于點M,連結MN,求∠ENM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點EEGCDAF于點G,連接DG.給出以下結論:①DG=DF;②四邊形EFDG是菱形;③EG2GF×AF;④當AG=6,EG=2時,BE的長為 ,其中正確的結論個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設計建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設路基高為h,兩側的坡角分別為,已知h=2,,

(1)求路基底部AB的寬;

(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

同步練習冊答案