【題目】有5根細(xì)木棒,它們的長度分別是、、、、.從中任取3根恰能搭成一個三角形的概率是___________.
【答案】
【解析】
首先利用列舉法求得從中任取3根的所有等可能的情況與從中任取3根恰好能搭成一個三角形的情況,然后利用概率公式求解即可求得答案.
解:∵從1cm,3cm,5cm,7cm,9cm的五根木棒任取3根的所有可能性有:
1cm,3cm,5cm;
1cm,3cm,7cm;
1cm,3cm,9cm;
1cm,5cm,7cm;
1cm,5cm,9cm;
1cm,7cm,9cm;
3cm,5cm,7cm;
3cm,5cm,9cm;
3cm,7cm,9cm;
5cm,7cm,9cm
共10種情況;
從中任取3根恰好能搭成一個三角形的有:
3cm,5cm,7cm;
3cm,7cm,9cm;
5cm,7cm,9cm
共3種情況;
∴從中任取3根恰好能搭成一個三角形的概率為,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行長跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達(dá)終點
B. 跑步過程中,兩人相遇一次
C. 起跑后160秒時,甲、乙兩人相距最遠(yuǎn)
D. 乙在跑前300米時,速度最慢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,到折痕的距離記為;還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,到折痕的距離記為;按上述方法不斷操作下去,經(jīng)過第2019次操作后,到折痕的距離記為,若,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水壩的橫截面是梯形,迎水坡的坡角為,背水坡的坡度為,壩頂寬米,壩高5米.求:
(1)壩底寬的長(結(jié)果保留根號);
(2)在上題中,為了提高堤壩的防洪能力,市防汛指揮部決定加固堤壩,要求壩頂加寬0.5米,背水坡的坡度改為,已知堤壩的總長度為,求完成該項工程所需的土方(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,Rt△ABC中,∠C=90°,AC=3,BC=4,點D是AB邊上任意一點,則CD的最小值為____.
(2)如圖②,矩形ABCD中,AB=3,BC=4,點M、點N分別在BD、BC上,求CM+MN的最小值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,射線和互相垂直,點是上的一個動點,點在射線上,,作并截取,連結(jié)并延長交射線于點.設(shè),則關(guān)于的函數(shù)解析式是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com