為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測得竹竿的影長(BC)為1.8米,求路燈離地面的高度.

解析試題分析:先根據(jù)AB⊥OC′,OS⊥OC′可知△ABC∽△SOC,同理可得△A′B′C′∽△SOC′,再由相似三角形的對應邊成比例即可得出h的值.
∵AB⊥OC′,OS⊥OC′,
∴△ABC∽△SOC,

同理,∵A′B′⊥OC′,
∴△A′B′C′∽△SOC′,


把①代入②得,解得
答:路燈離地面的高度是米.
考點:相似三角形的應用
點評:相似三角形的應用是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了4米(BB′),再把竹竿豎立在地面上,測得竹竿的影長(B′C′)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省泰州市姜堰區(qū)四校八年級下學期第三次聯(lián)考數(shù)學試卷(帶解析) 題型:解答題

為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB),再把竹竿豎立在地面上, 測得竹竿的影長(BC)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆江蘇興化市八年級下學期第二次月考數(shù)學試卷(解析版) 題型:解答題

為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測得竹竿的影長(BC)為1.8米,求路燈離地面的高度.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了4米(BB′),再把竹竿豎立在地面上,測得竹竿的影長(B′C′)為1.8米,求路燈離地面的高度.

查看答案和解析>>

同步練習冊答案