【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點,(不與點B、C)重合,將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B、C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
【答案】(1)60°,AC=DC+EC(2)∠ACE=45°,BD2+CD2=2AD2,詳見解析(3)AD=或AD=
【解析】
(1)證明△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;
(2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根據(jù)勾股定理計算即可;
(3)如圖3,作AE⊥CD于E,連接AD,根據(jù)勾股定理得到BC==,推出點B,C,A,D四點共圓,根據(jù)圓周角定理得到∠ADE=45°,求得△ADE是等腰直角三角形,得到AE=DE,根據(jù)勾股定理即可得到結(jié)論.
(1)∵在△ABC中,AB=AC,∠BAC=60°,
∴∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B=60°,BD=CE,
∴BC=BD+CD=EC+CD,
∴AC=BC=EC+CD;
故答案為:60°,AC=DC+EC;
(2)BD2+CD2=2AD2,
理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴BD2+CD2=2AD2;
(3)如圖3,作AE⊥CD于E,連接AD,
∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,
∴BC=,
∵∠BAC=90°,AB=AC,
∴AB=AC=,∠ABC=∠ACB=45°,
∵∠BDC=∠BAC=90°,
∴點B,C,A,D四點共圓,
∴∠ADE=45°,
∴△ADE是等腰直角三角形,
∴AE=DE,
∴CE=5DE,
∵AE2+CE2=AC2,
∴AE2+(5AE)2=17,
∴AE=1,AE=4,
∴AD=或AD=.
科目:初中數(shù)學 來源: 題型:
【題目】某商店從機械廠購進甲、乙兩種零件進行銷售,若甲種零件每件的進價是乙種零件每件進價的,用1600元單獨購進一種零件時,購進甲種零件的數(shù)量比乙種零件的數(shù)量多4件.
(1)求每件甲種零件和每件乙種零件的進價分別為多少元?
(2)若該商店計劃購進甲、乙兩種零件共110件,準備將零件批發(fā)給零售商. 甲種零件的批發(fā)價是每件100元,乙種零件的批發(fā)價是每件130元,該商店計劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進多少件甲種零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象交于點.
(1)求m、b的值;
(2)點B在反比例函數(shù)的圖象上,且點B的橫坐標為1.若在直線l上存在一點P(點P不與點A重合),使得,結(jié)合圖象直接寫出點P的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)求證:直線DE是⊙O的切線;
(2)若⊙O半徑為1,BC=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段OA與線段OA′關(guān)于直線l:y=x對稱.已知點A的坐標為(2,1),則點A′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在 Rt△ABC 中,∠ACB=90°,BE 平分∠ABC,D 是邊 AB 上一點,以 BD為直徑的⊙O 經(jīng)過點 E,且交 BC 于點 F.
(1)求證:AC 是⊙O 的切線;
(2)若 BC=8,⊙O 的半徑為 5,求 CE 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形的對角線交點,點分別為邊的中點.有下列四個推斷,
①對于任意四邊形,四邊形都是平行四邊形;
②若四邊形是平行四邊形,則與交于點;
③若四邊形是矩形,則四邊形也是矩形;
④若四邊形是正方形,則四邊形也一定是正方形.
所有正確推斷的序號是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,Rt△ABC中,∠C=90°,AB=15,BC=9,點D,E分別在AC,BC上,CD=4 x,CE=3x,其中0<x<3.
(1)求證:DE∥AB;
(2)當x=1時 ,求點E到AB的距離;
(3) 將△DCE繞點E逆時針方向旋轉(zhuǎn),使得點D落在AB邊上的D′處. 在旋轉(zhuǎn)的過程中,若點D′的位置有且只有一個,求x的取值范圍.
圖1 備用圖1 備用圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com