【題目】拋物線y=x2-(m+1)x+m與y軸交于(0,-3)點.
(1)求出m的值和拋物線與x軸的交點;
(2)x取什么值時,y>0.
【答案】(1) m=-3,(-3,0)和(1,0);(2)x<-3或x>1.
【解析】
(1)將點(0,-3)代入函數解析式,可求出m的值,得到拋物線解析式,令y=0得到關于x的一元二次方程,解方程即可得到拋物線與x軸的交點坐標.
(2)利用二次函數的性質,可知拋物線的開口向上,再根據拋物線與x軸的兩交點的橫坐標,可得到y>0時,x的取值范圍.
解:(1)把(0,-3)代入y=x2-(m+1)x+m,得m=-3
∴拋物線解析式為y=x2+2x-3
令y=0,得x2+2x-3=0,解得x1=-3,x2=1
∴拋物線與x軸的交點為(-3,0)和(1,0)
(2)如圖所示,
∵拋物線開口向上,
∴當x<-3或x>1時,y>0
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,,,,是的中點,將繞點旋轉,當(即)與交于一點,()同時與交于一點時,點,和點構成,在此過程中,周長的最小值是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于的一元二次方程x2+2x+k+1=0的實數解是x1和x2.
(1)求k的取值范圍;
(2)如果x1+x2﹣x1x2<﹣1且k為整數,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D.”這里,根據已學的相似三角形的知識,易證:=.在圖1這個基本圖形的基礎上,繼續(xù)添加條件“如圖2,點E是直線AC上一動點,連接DE,過點D作FD⊥ED,交直線BC于點F,設=.”
(1)探究發(fā)現(xiàn):如圖②,若m=n,點E在線段AC上,則= ;
(2)數學思考:
①如圖3,若點E在線段AC上,則= (用含m,n的代數式表示);
②當點E在直線AC上運動時,①中的結論是否仍然成立?請僅就圖4的情形給出證明;
(3)拓展應用:若AC=,BC=2,DF=4,請直接寫出CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=(x+2)2+m與x軸交于A,B兩點,與y軸交于點C.點D在拋物線上,且與點C關于拋物線的對稱軸對稱,拋物線的頂點為M,點B的坐標為(﹣1,0).
(1)求拋物線的解析式及A,C,D的坐標;
(2)判斷△ABM的形狀,并證明你的結論;
(3)若點P是直線BD上一個動點,是否存在以P,C,D為頂點的三角形與△ABD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+8ax(a>0)與x軸交于O,A兩點,頂點為M,對稱軸與x軸交于H,與過O,A,M三點的⊙Q交于點B,⊙Q的半徑為5,點C從點B出發(fā),沿著圓周順時針向點M運動,射線MC與x軸交于D,與拋物線交于E,過點E作ME的垂線交拋物線的對稱軸于點F.
(1)求拋物線的解析式;
(2)當點C的運動路徑長為 時,求證:HD=2HA.
(3)在點C運動過程中.是否存在這樣的位置,使得以點M,E,F為頂點的三角形與△AHQ相似?若存在,求出此位置時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E. F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC、BC,過點C作∠BCP=∠BAC,交AB的延長線于點P,弦CD平分∠ACB,交AB于點E,連接OC、AD、BD.
(1)求證:PC為⊙O的切線;
(2)若OC=5,OE=1,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.
(1) 判斷直線CD與⊙O的位置關系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com