【題目】在中,,AE垂直于AB邊上的中線(xiàn)CD,交BC于點(diǎn)E.
(1)求證:
(2)若,求邊AC與BC的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)
【解析】
(1)先說(shuō)明△ACB∽△ECA,然后運(yùn)用相似三角形的性質(zhì)即可解答;
(2) 在Rt△ABC的中線(xiàn),運(yùn)用勾股定理求出AB,再說(shuō)明△DFC∽△ECA,運(yùn)用相似三角形的性質(zhì)即可解答。
解:(1)因?yàn)?/span>CD是AB邊上的中線(xiàn),
所以CD=DB,
∠ABC=∠DCB=∠CAE,
∠ACB=∠ECA=,
所以△ACB∽△ECA,
所以,
所以
(2)因?yàn)?/span>CD是Rt△ABC的中線(xiàn),
所以CD=AD=BD.
所以AB=6.
所以
取BC中點(diǎn)F,連結(jié)DF,則DF//AC,∠DFC=∠ECA=,
所以△DFC∽△ECA,
所以.
所以
故可解得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線(xiàn)上.
填空:線(xiàn)段AD,BE之間的關(guān)系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,線(xiàn)段PA=3,點(diǎn)B是線(xiàn)段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段AC,隨著點(diǎn)B的位置的變化,直接寫(xiě)出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),平行于軸的直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn),點(diǎn)在對(duì)稱(chēng)軸左側(cè),.
I.求此拋物線(xiàn)的解析式;
Ⅱ.已知在軸上存在一點(diǎn),使得的周長(zhǎng)最小,求點(diǎn)的坐標(biāo);
Ⅲ.若過(guò)點(diǎn)的直線(xiàn)將的面積分成2:3兩部分,試求直線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動(dòng)點(diǎn)D從B出發(fā),沿線(xiàn)段BA運(yùn)動(dòng)到點(diǎn)A為止(不考慮D與B,A重合的情況),運(yùn)動(dòng)速度為2cm/s,過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接BE,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x(s),AE的長(zhǎng)為y(cm).
(1)求y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在正方形ABCD中,AB=3,E是邊BC上一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,點(diǎn)C重合),連接AE,點(diǎn)H是BC延長(zhǎng)線(xiàn)上一點(diǎn).過(guò)點(diǎn)B作BF⊥AE,交AE于點(diǎn)G,交DC于點(diǎn)F.
(1)求證:AE=BF;
(2)過(guò)點(diǎn)E作EM⊥AE,交∠DCH的平分線(xiàn)于點(diǎn)M,連接FM,判斷四邊形BFME的形狀,并說(shuō)明理由;
(3)在(2)的條件下,∠EMC的正弦值為,求四邊形AGFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,1)在拋物線(xiàn)y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的關(guān)系式;
(2)若該拋物線(xiàn)的頂點(diǎn)在x軸上,求出它的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)(k為常數(shù),k>0)的圖象與過(guò)原點(diǎn)的O的直線(xiàn)相交于A,B兩點(diǎn),點(diǎn)M是第一象限內(nèi)雙曲線(xiàn)上的動(dòng)點(diǎn)(點(diǎn)M在點(diǎn)A的左側(cè)),直線(xiàn)AM分別交x軸,y軸于C,D兩點(diǎn),連接BM分別交x軸,y軸于點(diǎn)E,F.現(xiàn)有以下四個(gè)結(jié)論:①△ODM與△OCA的面積相等;②若BM⊥AM于點(diǎn)M,則∠MBA=30°;③若M點(diǎn)的橫坐標(biāo)為1,△OAM為等邊三角形,則;④若,則MD=2MA.其中正確的結(jié)論的序號(hào)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育組為了了解九年級(jí)450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級(jí)部分學(xué)生進(jìn)行排球墊球測(cè)試(單位:個(gè)),根據(jù)測(cè)試結(jié)果,制成了下面不完整的統(tǒng)計(jì)圖表:
組別 | 個(gè)數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級(jí)排球墊球測(cè)試結(jié)果小于10的人數(shù);
(3)排球墊球測(cè)試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個(gè)男生,2個(gè)女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過(guò)畫(huà)樹(shù)狀圖或列表的方法求選出的2人為一個(gè)男生一個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx﹣1與x軸的交點(diǎn)為A(﹣1,0),B(2,0),且與y軸交于C點(diǎn).
(1)求該拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為C1,M是線(xiàn)段BC1上的一個(gè)動(dòng)點(diǎn)(不與B、C1重合),ME⊥x軸,MF⊥y軸,垂足分別為E、F,當(dāng)點(diǎn)M在什么位置時(shí),矩形MFOE的面積最大?說(shuō)明理由.
(3)已知點(diǎn)P是直線(xiàn)y=x+1上的動(dòng)點(diǎn),點(diǎn)Q為拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)以C、C1、P、Q為頂點(diǎn)的四邊形為平行四邊形時(shí),求出相應(yīng)的點(diǎn)P和點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com