(2010•徐州)如圖,已知二次函數(shù)y=的圖象與y軸交于點A,與x軸交于B、C兩點,其對稱軸與x軸交于點D,連接AC.
(1)點A的坐標為______,點C的坐標為______;
(2)線段AC上是否存在點E,使得△EDC為等腰三角形?若存在,求出所有符合條件的點E的坐標;若不存在,請說明理由;
(3)點P為x軸上方的拋物線上的一個動點,連接PA、PC,若所得△PAC的面積為S,則S取何值時,相應(yīng)的點P有且只有2個?

【答案】分析:(1)拋物線的解析式中,令x=0即得二次函數(shù)與y軸交點A的縱坐標,令y=0即得二次函數(shù)與x軸交點的橫坐標.
(2)根據(jù)A、C的坐標,易求得直線AC的解析式,由于等腰△EDC的腰和底不確定,因此要分成三種情況討論:
①CD=DE,由于OD=3,OA=4,那么DA=DC=5,此時A點符合E點的要求,即此時A、E重合;
②CE=DE,根據(jù)等腰三角形三線合一的性質(zhì)知:E點橫坐標為點D的橫坐標加上CD的一半,然后將其代入直線AC的解析式中,即可得到點E的坐標;
③CD=CE,此時CE=5,過E作EG⊥x軸于G,已求得CE、CA的長,即可通過相似三角形(△CEG∽△CAO)所得比例線段求得EG、CG的長,從而得到點E的坐標.
(3)過P作x軸的垂線,交AC于Q,交x軸于H;設(shè)出點P的橫坐標(設(shè)為m),根據(jù)拋物線和直線AC的解析式,即可表示出P、Q的縱坐標,從而可得到PQ的長,然后分兩種情況進行討論:
①P點在第一象限時,即0<m<8時,可根據(jù)PQ的長以及A、C的坐標,分別表示出△APQ、△CPQ的面積,它們的面積和即為△APC的面積,由此可得到S的表達式,通過配方即可得到S的取值范圍;
②當P在第二象限時,即-2<m<0時,同①可求得△APQ、△CPQ的面積,此時它們的面積差為△APC的面積,同理可求得S的取值范圍;根據(jù)兩個S的取值范圍,即可判斷出所求的結(jié)論.
解答:解:(1)在二次函數(shù)中令x=0得y=4,
∴點A的坐標為(0,4),
令y=0得:,
即:x2-6x-16=0,
∴x=-2和x=8,
∴點B的坐標為(-2,0),點C的坐標為(8,0).

(2)易得D(3,0),CD=5,
設(shè)直線AC對應(yīng)的函數(shù)關(guān)系式為y=kx+b,則:
,
解得;
∴y=-x+4;
①當DE=DC時,
∵OA=4,OD=3,
∴DA=5,
∴E1(0,4);
②過E點作EG⊥x軸于G點,
當DE=EC時,由DG==,
把x=OD+DG=3+=代入到y(tǒng)=-x+4,求出y=,
可得E2,);
③當DC=EC時,如圖,過點E作EG⊥CD,
則△CEG∽△CAO,
,又OA=4,OC=8,則AC=4,DC=EC=5,
∴EG=,CG=2,
∴E3(8-2,);
綜上所述,符合條件的E點共有三個:E1(0,4)、E2)、E3(8-2).

(3)如圖,過P作PH⊥OC,垂足為H,交直線AC與點Q;
設(shè)P(m,-m2+m+4),則Q(m,-m+4).
①當0<m<8時,
PQ=(-m2+m+4)-(-m+4)=-m2+2m,
S=S△APQ+S△CPQ=×8×(-m2+2m)=-(m-4)2+16,
∴0<S≤16;
②當-2≤m<0時,
PQ=(-m+4)-(-m2+m+4)=m2-2m,
S=S△CPQ-S△APQ=×8×(m2-2m)=(m-4)2-16,
∴0<S<20;
∴當0<S<16時,0<m<8中有m兩個值,-2<m<0中m有一個值,此時有三個;
當16<S<20時,-2<m<0中m只有一個值;
當S=16時,m=4或m=4-4這兩個.
故當S=16時,相應(yīng)的點P有且只有兩個.
點評:此題考查了二次函數(shù)圖象與坐標軸交點坐標的求法、等腰三角形的構(gòu)成條件、圖形面積的求法等知識,(3)題的解題過程并不復(fù)雜,關(guān)鍵在于理解題意.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動點E、F同時從點B出發(fā),點E沿折線BA-AD-DC運動到點C時停止運動,點F沿BC運動到點C時停止運動,它們運動時的速度都是1cm/s.設(shè)E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2;
(2)當點E在BA、DC上運動時,分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《不等式與不等式組》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省徐州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動點E、F同時從點B出發(fā),點E沿折線BA-AD-DC運動到點C時停止運動,點F沿BC運動到點C時停止運動,它們運動時的速度都是1cm/s.設(shè)E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2;
(2)當點E在BA、DC上運動時,分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

同步練習冊答案