在平面直角坐標(biāo)系中,點0是坐標(biāo)原點,四邊形ABCD為菱形,AB邊在x軸上,點D在y軸上,點A的坐標(biāo)是(-6,0),AB=10.
(1)求點C的坐標(biāo):
(2)連接BD,點P是線段CD上一動點(點P不與C、D兩點重合),過點P作PE∥BC交BD于點E,過點B作BQ⊥PE交PE的延長線于點Q.設(shè)PC的長為x,PQ的長為y,求y與x之間的函數(shù)關(guān)系式(直接寫出自變量x的取值范圍);
(3)在(2)的條件下,連接AQ、AE,當(dāng)x為何值時,S△BQE+S△AQE=S△DEP?并判斷此時以點P為圓心,以5為半徑的⊙P與直線BC的位置關(guān)系,請說明理由.

【答案】分析:(1)過點C作CN⊥x軸,垂足為N,求得CN、ON的長,即可得出坐標(biāo);
(2)過點P作PH⊥BC,垂足為H,易證△PHC∽△DOA,可得CH=x,BH=10-x;然后證明四邊形PQBH為矩形,則PQ=BH,即可求得;
(3)過點P作PH′⊥BC,垂足為H′,過點D作DG⊥PQ于點G,過點A作AF⊥PQ交PQ的延長線于點F,用x分別表示出EQ、BQ、AF的值和PE、DG的值,然后,根據(jù)S△BOE+S△AQE=S△DEP,可求出x的值,最后根據(jù)PH′的值與x的值比較,即可得出其位置關(guān)系;
解答:解:(1)如圖1,過點C作CN⊥x軸,垂足為N,則四邊形DONC為矩形,
∴ON=CD
∵四邊形ABCD是菱形,AB=10,
∴AB=BC=CD=AD=10,
∴ON=10,
∵A(-6,0),
∴OA=6,OD===8,
∴點C的坐標(biāo)為(10,8);

(2)如圖2,過點P作PH⊥BC,垂足為H,則∠PHC=∠AOD=90°,
∵四邊形ABCD是菱形,
∴∠PCB=∠DAO,
∴△PHC∽△DOA,
==,
==,
∴PH=x,CH=x,
∴BH=10-x,
∵PE∥BC,BQ⊥PQ,
∴∠PQB=∠QBC=∠PHB=90°,
∴四邊形PQBH為矩形,
∴PQ=BH=10-x,
∴y=10-x(0<x<10);

(3)如圖3,過點P作PH′⊥BC,垂足為H′,則四邊形PQBH′是矩形,
∴BQ=PH′=x,
∵PE∥BC,
∴∠PED=∠CBD,
∵CD=CB,
∴∠CBD=∠CDB,
∴∠CDB=∠PED,
∴PE=PD=10-x,QE=PQ-PE=x,
過點D作DG⊥PQ于點G,過點A作AF⊥PQ交PQ的延長線于點F,
∴∠DGF=∠AFG=90°,
∵PQ∥BC,
∴PQ∥AD,
∴∠ADG=90°,
∴四邊形AFGD為矩形,
∴AF=DG,
∵PQ∥BC,
∴∠DPG=∠C,
∵∠DGP=∠PH′C=90°,
∴△DGP∽△PH′C,
=,
∴AF=DG=(10-x)=8-x,
∵S△BQE+S△AQE=EQ×BQ+EQ×AF,
=×x+×x×(8-x)=x,
S△DEP=PE×DG=(10-x)×(8-x),
=x2-8x+40,
∵S△BQE+S△AQE=S△DEP,
x=x2-8x+40),
整理得,x2-25x+100=0,
∴x1=5,x2=20,
∵0<x<10,
∴x2=20不符合題意,舍去,
∴x1=5,
∴x=5時,S△BQE+S△AQE=S△DEP
∵PH′=x=4<5,
∴⊙P與直線BC相交.
點評:本題考查了菱形、矩形的判定及性質(zhì)、相似三角形的判定及性質(zhì)、勾股定理的運用及直線與圓的位置關(guān)系,本題考查知識較多,屬綜合性題目,考查了學(xué)生對知識的掌握程度及熟練運用所學(xué)知識解答題目的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案