【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax24ax6a0)與x軸交于A,B兩點(diǎn),且OB3OA,與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)E

1)求該拋物線的解析式,并直接寫出頂點(diǎn)D的坐標(biāo);

2)如圖2,直線y+n與拋物線交于GH兩點(diǎn),直線AH,AG分別交y軸負(fù)半軸于M,N兩點(diǎn),求OM+ON的值;

3)如圖1,點(diǎn)P在線段DE上,作等腰BPQ,使得PBPQ,且點(diǎn)Q落在直線CD上,若滿足條件的點(diǎn)Q有且只有一個(gè),求點(diǎn)P的坐標(biāo).

【答案】(1)y=(x﹣2)2﹣8,D(2,﹣8)(2)9;(3)P(2,8﹣4

【解析】

1)由OB=3OA可設(shè)A-t0),B3t,0),代入拋物線解析式即得到關(guān)于a、t的二元方程,解方程求出a即求得拋物線解析式,配方即得到頂點(diǎn)D的坐標(biāo).

2)由(1)求得t=2可知點(diǎn)A-20),設(shè)Gx1,x12-2x1-6),Hx2,x22-2x2-6),把直線y=x+n與拋物線解析式聯(lián)立方程組,消去y后整理得關(guān)于x的一元二次方程,x1、x2即為方程的解,根據(jù)韋達(dá)定理求得x1+x2=3.設(shè)直線AG解析式為y=kx+b,把點(diǎn)A、G坐標(biāo)代入求出b的值即為點(diǎn)N縱坐標(biāo),進(jìn)而得到用x1表示的ON的值,同理可求得用x2表示的OM的值,相加再把x1+x2代入即求得OM+ON的值.

3)以點(diǎn)P為圓心,PB長為半徑的⊙P,由于滿足PB=PQ(即點(diǎn)Q在⊙P上)且點(diǎn)Q在直線CD上的點(diǎn)Q有且只有一個(gè),即⊙P與直線CD只有一個(gè)公共點(diǎn),所以直線CD與⊙P相切于點(diǎn)Q.由(1)得點(diǎn)C、D坐標(biāo)可知直線CDDE夾角為45°,PDQ為等腰直角三角形,PD=

2

PQ=

2

PB.設(shè)點(diǎn)P縱坐標(biāo)為p,用p表示PBPD的長并列得方程即可求p的值.由于點(diǎn)P在線段DE上,故p的值為負(fù)數(shù),舍去正數(shù)解.

1)∵拋物線yax24ax6x軸交于AB兩點(diǎn),OB3OA

∴設(shè)A(﹣t0),B3t,0)(t0

解得:

∴拋物線解析式為yx22x6x228

∴頂點(diǎn)D的坐標(biāo)為(2,﹣8

2)∵t2

A(﹣2,0

設(shè)拋物線上的點(diǎn)Gx1,x122x16),Hx2,x222x26

∵直線y+n與拋物線交于GH兩點(diǎn)

整理得:x23x122n0

x1+x23

設(shè)直線AG解析式為ykx+b,即N0,b)(b0

×x1得:﹣2kx1+bx10

×2得:2kx1+2bx124x112

+④得:(x1+2b=(x1+2)(x16

∵點(diǎn)GA不重合,即x1+2≠0

bx16ON=﹣b6x1

同理可得:OM6x2

OM+ON6x2+6x112﹣(x1+x2)=1239

3)如圖,過點(diǎn)CCFDE于點(diǎn)F,以點(diǎn)P為圓心、PB為半徑作圓

PBPQ

∴點(diǎn)Q在⊙P

∵有且只有一個(gè)點(diǎn)Q在⊙P上又在直線CD

∴⊙P與直線CD相切于點(diǎn)Q

PQCD

由(1)得:B6,0),C0,﹣6),D2,﹣8

CF2DF=﹣6﹣(﹣8)=2,即CFDF

∴∠CDF45°

∴△DPQ為等腰直角三角形

PDPQ

PD22PQ22PB2

設(shè)P2,p)(﹣8≤p≤0

PDp+8,PB2=(622+p216+p2

∴(p+8216+p2

解得:p184,p28+4(舍去)

∴點(diǎn)P坐標(biāo)為(284

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1x22x5

2)(3y2+y29

32x27x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸正半軸上,點(diǎn)A與原點(diǎn)重合,點(diǎn)D的坐標(biāo)是 34),反比例函數(shù)yk≠0)經(jīng)過點(diǎn)C,則k的值為( 。

A.12B.15C.20D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC與⊙O交于點(diǎn)F,弦AD平分∠BACDEAC,垂足為E點(diǎn).

1)求證:DE是⊙O的切線;

2)若⊙O的半徑為2,∠BAC60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)yx0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC上的一點(diǎn)E,且CE2AE,菱形的邊長為8,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤游戲時(shí),把質(zhì)地相同的兩個(gè)盤AB分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各1次,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時(shí)甲勝;數(shù)字之積為奇數(shù)時(shí)乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.

1)用樹狀圖或列表的方法,求甲獲勝的概率;

2)這個(gè)游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個(gè)人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個(gè)共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號(hào)為A,B,CD的四張卡片(除編號(hào)和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.

1)從中隨機(jī)抽取一張,求剛好抽到“共享服務(wù)”的概率.

2)從中隨機(jī)抽取一張(不放回),再從中隨機(jī)抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識(shí)”的概率(這四張卡片分別用它們的編號(hào)AB,C,D表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為圓心,半徑為的圓與反比例函數(shù)的圖象交于,兩點(diǎn),則點(diǎn)軸的距離為_____________的長度為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果公司購進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結(jié)果保留小數(shù)點(diǎn)后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計(jì)這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.

查看答案和解析>>

同步練習(xí)冊答案