下列事件中,必然事件是
A. 拋擲一枚硬幣,正面朝上
B. 打開電視,正在播放廣告
C. 體育課上,小剛跑完1000米所用時間為1分鐘
D. 袋中只有4個球,且都是紅球,任意摸出一球是紅球
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P(﹣1,1)在雙曲線上,過點(diǎn)P的直線l1與坐標(biāo)軸分別交于A、B兩點(diǎn),且tan∠BAO=1.點(diǎn)M是該雙曲線在第四象限上的一點(diǎn),過點(diǎn)M的直線l2與雙曲線只有一個公共點(diǎn),并與坐標(biāo)軸分別交于點(diǎn)C、點(diǎn)D.則四邊形ABCD的面積最小值為( )
| A. | 10 | B. | 8 | C. | 6 | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)O為對角線BD的中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動的時間為t(秒).
(1)求點(diǎn)N落在BD上時t的值;
(2)直接寫出點(diǎn)O在正方形PQMN內(nèi)部時t的取值范圍;
(3)當(dāng)點(diǎn)P在折線AD﹣DO上運(yùn)動時,求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出直線DN平分△BCD面積時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀材料:如圖1,在△AOB中,∠O=90°,OA=OB,點(diǎn)P在AB邊上,PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F,則PE+PF=OA.(此結(jié)論不必證明,可直接應(yīng)用)
(1)【理解與應(yīng)用】
如圖2,正方形ABCD的邊長為2,對角線AC,BD相交于點(diǎn)O,點(diǎn)P在AB邊上,PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F,則PE+PF的值為 .
(2)【類比與推理】
如圖3,矩形ABCD的對角線AC,BD相交于點(diǎn)O,AB=4,AD=3,點(diǎn)P在AB邊上,PE∥OB交AC于點(diǎn)E,PF∥OA交BD于點(diǎn)F,求PE+PF的值;
(3)【拓展與延伸】
如圖4,⊙O的半徑為4,A,B,C,D是⊙O上的四點(diǎn),過點(diǎn)C,D的切線CH,DG相交于點(diǎn)M,點(diǎn)P在弦AB上,PE∥BC交AC于點(diǎn)E,PF∥AD于點(diǎn)F,當(dāng)∠ADG=∠BCH=30°時,PE+PF是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,
OA=1,OB=,連接AB,過AB中點(diǎn)C1分別作x軸和y軸的
垂線,垂足分別是點(diǎn)A1、B1,連接A1B1,再過A1B1中點(diǎn)C2作x
軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com