(利用
a2
=|a|
解決本題)已知△ABC的三邊分別為a、b、c,化簡:
(a+b+c)2
+
(a-b-c)2
+
(b-c-a)2
-
(c-a-b)2
分析:根據(jù)兩邊之和大于第三邊可將各二次根式求出,從而可得出化簡后的答案.
解答:解:由三邊關(guān)系得:a+b+c>0,a-b-c<0,b-c-a<0,c-a-b<0,
∴原式=a+b+c+b+c-a+a+c-b+a+b-c=2a+2b+2c.
點評:本題考查二次根式的化簡及三角形的三邊關(guān)系,掌握三角形兩邊之和大于第三邊是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、問題1:同學(xué)們已經(jīng)體會到靈活運用乘法公式給整式乘法及多項式的因式分解帶來的方便,快捷.相信通過下面材料的學(xué)習(xí)探究,會使你大開眼界并獲得成功的喜悅.
例:用簡便方法計算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例題求解過程中,第②步變形是利用
平方差公式
(填乘法公式的名稱).
(2)用簡便方法計算:9×11×101×10001(4分)
問題2:對于形如x2+2xa+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2xa-3a2,就不能直接運用公式了.
此時,我們可以在二次三項式x2+2xa-3a2中先加上一項a2,使它與x2+2xa的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,它的三邊長分別為a,b,c,對于同一個銳精英家教網(wǎng)角A的正弦,余弦存在關(guān)系式sin2A+cos2A=1試說明.
解:∵sinA=
 
,cosA=
 

∴sin2A+cos2A=
 
,
∵a2+b2=c2,∴sin2A+cos2A=1.
(1)在橫線上填上適當(dāng)內(nèi)容;
(2)若∠α為銳角,利用(1)的關(guān)系式解決下列問題.
①若sinα=
4
5
,求cosα的值;cosα=
3
5

②若sinα+cosα=1.1,求sinαcosα的值.sinαcosα=0.105.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料并解答后面的問題:利用完全平方公式(a±b)2=a2±2ab+b2,通過配方可對a2+b2進行適當(dāng)?shù)淖冃,如a2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.從而使某些問題得到解決.例:已知a+b=5,ab=3,求a2+b2的值.
解:a2+b2=(a+b)2-2ab=52-2×3=19.
問題:(1)已知a+
1
a
=6,則a2+
1
a2
=
 

(2)已知a-b=2,ab=3,求a4+b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(a+b)2=a2+2ab+b2;②(a-b)2=a2-2ab+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:ab=(
a+b
2
2-(
a-b
2
2,這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式.靈活、恰當(dāng)?shù)剡\用公式③將會使一些數(shù)學(xué)問題迎刃而解.
例如:因式分解:(ab-1)2+(a+b-2)( a+b-2ab)
解:原式=(ab-1)2+[
(a+b-2)-(a+b-2ab)
2
]2
-[
(a+b-2)-(a+b-2ab)
2
]2

=(ab-1)2+(a+b-ab-1)2-(ab-1)2=(a-1)(b-1)2=(a-1)2(b-1)2
你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù)a,b,c滿足ab=c2+9且a=6-b,求證:a=b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

式子
a2+b2
可以理解為“以a、b為直角邊長的直角三角形的斜邊長”,利用這個知識,我們可以恰當(dāng)?shù)貥?gòu)造圖形來解決一些數(shù)學(xué)問題.比如在解“已知a+b=2,則
a2+1
+
b2+4
的最小值為
13
13
”時,我們就可以構(gòu)造兩個直角三角形,轉(zhuǎn)化為“求兩個直角三角形的斜邊和最小是多少”的問題.請你根據(jù)所給圖形和題意,在橫線上填上正確的答案.

查看答案和解析>>

同步練習(xí)冊答案