如圖,拋物線x軸交于A、B兩點(A點在B點左側(cè)),與y軸交于點C,對稱軸為直線OA = 2,OD平分∠BOC交拋物線于點D(點D在第一象限).

(1)求拋物線的解析式和點D的坐標(biāo);
(2)在拋物線的對稱軸上,是否存在一點P,使得△BPD的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)點M是拋物線上的動點,在x軸上是否存在點N,使A、D、M、N四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點坐標(biāo);如果不存在,請說明理由.


(1) ;D(2,2)
(2)存在,證明略。
(3)存在,證明略。

解析解:(1) ∵OA = 2,∴A(– 2,0)。
AB關(guān)于直線對稱,
B(3,0),由于A、B兩點在拋物線上,
解得。     ∴
DDEx軸于E,∵∠BOC = 90,OD平分∠BOC,
∴∠DOB = 45,∠ODE = 45,∴DE = OE,即xD = yD,
,解得x1 = 2,x2 =" –" 3(舍去)
D(2,2)!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ (4分)
(2) 存在。BD為定值,∴要使△BPD的周長最小,只需PD + PB最小。
AB關(guān)于直線對稱,∴PB = PA,只需PD + PA最小。
∴連接AD,交對稱軸于點P,此時PD + PA最小。······································ (6分)

A(– 2,0),D(2,2)可得,直線AD········································· (7分)
,∴存在點P(),使△BPD的周長最小。························· (8分)
(3) 存在。
(i) 當(dāng)ADAMDN的對角線時,MDAN,即MDx軸。
yM= yD,
MD關(guān)于直線對稱。
M( – 1,2)!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ (9分)
(ii) 當(dāng)ADADMN的邊時,
ADMN是中心對稱圖形,△AND≌△ANM

∴令
解得·································· (11分)
綜上所述:滿足條件的M點有三個M(– 1,2),
···················································································· (12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標(biāo);
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請指出符合條件的點P的位置,并直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當(dāng)△CMN的面積最大時,求點M的坐標(biāo);
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點,與y軸交于C(0,3),M是拋物線對稱軸上的任意一點,則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標(biāo);反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標(biāo)為t,則S在何范圍內(nèi)時,相應(yīng)的點P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點,且對稱軸為直線x=2,與y軸交于點C(0,-4).
(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一個動點,連接MA、MC,當(dāng)△MAC的周長最小時,求點M的坐標(biāo);
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案