教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的大正方形紙片上(如圖①),你能通過計算未蓋住部分的面積得到公式(a+b)(a-b)=a2-b2嗎?(不必證明)
作業(yè)寶
(1)如果將小正方形的一邊延長(如圖②),是否也能推導公式?請完成證明.
(2)面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖③,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4×數(shù)學公式ab+(a-b)2,由此推導出重要的勾股定理:a2+b2=c2.圖④為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.
(3)試構造一個圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格(圖⑤)中,并標出字母a、b所表示的線段.

解:(1)未蓋住部分的面積為:a(a-b)+b(a-b)=(a+b)(a-b),
也可以看作a2-b2
則(a+b)(a-b)=a2-b2;

(2)因為S梯形=(a+b)2=(a2+2ab+b2),
又因為S梯形=ab+ba+c2,
所以(a2+2ab+b2)=(2ab+c2),
a2+ab+b2=ab+c2
得c2=a2+b2

(3)∵圖形面積為:(a-2b)2=a2-4ab+4b2,
∴邊長為=a-2b,
由此可畫出的圖形為:

分析:利用正方形和梯形的面積公式可知,圖中未蓋住部分的面積=(a+b)(a-b)=a2-b2
(1)利用正方形和長方形的面積公式可知,圖中未蓋住部分的面積=a(a-b)+b(a-b)=(a+b)(a-b)=a2-b2
(2)此直角梯形的面積有三部分組成,利用直角梯形的面積等于三個直角三角形的面積之和列出方程并整理.
(3)已知圖形面積的表達式,即可根據(jù)表達式得出圖形的邊長的表達式,即可畫出圖形.
點評:(1)考查了平方差公式的幾何意義,運用不同方法表示未蓋住部分面積是解題的關鍵.
(2)此類證明要轉化成同一個東西的兩種表示方法,從而轉化成方程達到證明的結果.
(3)考查了多項式的乘法的運用以及由多項式畫圖形的創(chuàng)新題型.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的大正方形紙片上(如圖①),你能通過計算未蓋住部分的面積得到公式(a+b)(a-b)=a2-b2嗎?(不必證明)

(1)如果將小正方形的一邊延長(如圖②),是否也能推導公式?請完成證明.
(2)面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖③,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4×
12
ab+(a-b)2,由此推導出重要的勾股定理:a2+b2=c2.圖④為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.
(3)試構造一個圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格(圖⑤)中,并標出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省太倉市七年級期中考試數(shù)學卷(帶解析) 題型:解答題

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的大正方形紙片上(如圖9?6),你能通過計算未蓋住部分的面積得到公式(a + b) (a?b) = a2?b2嗎?(不必證明)

(1)如果將小正方形的一邊延長(如圖①),是否也能推導公式?請完成證明.
(2) 面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”.例如,著名的趙爽弦圖(如圖②,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4´ab + (a ?b)2,由此推導出重要的勾股定理:a2 + b2 = c2.圖③為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.

(3) 試構造一個圖形,使它的面積能夠解釋(a? 2b)2 = a2?4ab + 4b2,畫在下面的格點中,并標出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省太倉市七年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的
大正方形紙片上(如圖9?6),你能通過計算未蓋住部分的面積得到公式(a + b) (a ? b) = a2? b2嗎?
(不必證明)
(1)如果將小正方形的一邊延長(如圖①),是否也能推導公式?請完成證明.

(2) 面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”.例如,著名的趙爽弦圖(如圖②,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4´ab + (a ? b)2,由此推導出重要的勾股定理:a2 + b2 = c2
圖③為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.

(3) 試構造一個圖形,使它的面積能夠解釋(a ? 2b)2 = a2? 4ab + 4b2,畫在下面的格點中,并標出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆江蘇省太倉市七年級下學期期中考試數(shù)學試卷(解析版) 題型:解答題

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的

大正方形紙片上(如圖9−6),你能通過計算未蓋住部分的面積得到公式(a + b) (a − b) = a2 − b2嗎?

(不必證明)

(1)如果將小正方形的一邊延長(如圖①),是否也能推導公式?請完成證明.

(2) 面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”.例如,著名的趙爽弦圖(如圖②,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4´ab + (a − b)2,由此推導出重要的勾股定理:a2 + b2 = c2

圖③為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.

(3) 試構造一個圖形,使它的面積能夠解釋(a − 2b)2 = a2 − 4ab + 4b2,畫在下面的格點中,并標出字母a、b所表示的線段.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆江蘇省太倉市七年級期中考試數(shù)學卷(解析版) 題型:解答題

教材第66頁探索平方差公式時設置了如下情境:邊長為b的小正方形紙片放置在邊長為a的大正方形紙片上(如圖9−6),你能通過計算未蓋住部分的面積得到公式(a + b) (ab) = a2b2嗎?(不必證明)

 (1)如果將小正方形的一邊延長(如圖①),是否也能推導公式?請完成證明.

(2) 面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”.例如,著名的趙爽弦圖(如圖②,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為4´ab + (a b)2,由此推導出重要的勾股定理:a2 + b2 = c2.圖③為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你完成證明.

 (3) 試構造一個圖形,使它的面積能夠解釋(a − 2b)2 = a2 − 4ab + 4b2,畫在下面的格點中,并標出字母ab所表示的線段.

 

 

查看答案和解析>>

同步練習冊答案