(2013•菏澤)如圖,?ABCD中,對角線AC與BD相交于點E,∠AEB=45°,BD=2,將△ABC沿AC所在直線翻折180°到其原來所在的同一平面內,若點B的落點記為B′,則DB′的長為
2
2

分析:如圖,連接BB′.根據(jù)折疊的性質知△BB′E是等腰直角三角形,則BB′=
2
BE.又B′E是BD的中垂線,則DB′=BB′.
解答:解:∵四邊形ABCD是平行四邊形,BD=2,
∴BE=
1
2
BD=1.
如圖2,連接BB′.
根據(jù)折疊的性質知,∠AEB=∠AEB′=45°,BE=B′E.
∴∠BEB′=90°,
∴△BB′E是等腰直角三角形,則BB′=
2
BE=
2

又∵BE=DE,B′E⊥BD,
∴DB′=BB′=
2

故答案是:
2
點評:本題考查了平行四邊形的性質,等腰三角形的判定與性質以及翻折變換(折疊的性質).推知DB′=BB′是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•菏澤)如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為120° 的菱形,剪口與第二次折痕所成角的度數(shù)應為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•菏澤)如圖,數(shù)軸上的A、B、C三點所表示的數(shù)分別是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么該數(shù)軸的原點O的位置應該在( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•菏澤)如圖,BC是⊙O的直徑,A是⊙O上一點,過點C作⊙O的切線,交BA的延長線于點D,取CD的中點E,AE的延長線與BC的延長線交于點P.
(1)求證:AP是⊙O的切線;
(2)OC=CP,AB=6,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•菏澤)如圖,三角形ABC是以BC為底邊的等腰三角形,點A、C分別是一次函數(shù)y=-
3
4
x+3的圖象與y軸的交點,點B在二次函數(shù)y=
1
8
x2+bx+c
的圖象上,且該二次函數(shù)圖象上存在一點D使四邊形ABCD能構成平行四邊形.
(1)試求b,c的值,并寫出該二次函數(shù)表達式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動,問:
①當P運動到何處時,有PQ⊥AC?
②當P運動到何處時,四邊形PDCQ的面積最?此時四邊形PDCQ的面積是多少?

查看答案和解析>>

同步練習冊答案