在平面直角坐標(biāo)系xOy中,OEFG為正方形,點(diǎn)F的坐標(biāo)為(1,1).將一個(gè)最短邊長(zhǎng)大于數(shù)學(xué)公式的直角三角形紙片的直角頂點(diǎn)放在對(duì)角線(xiàn)FO上.
(1)如圖,當(dāng)三角形紙片的直角頂點(diǎn)與點(diǎn)F重合,一條直角邊落在直線(xiàn)FO上時(shí),這個(gè)三角形紙片與正方形OEFG重疊部分(即陰影部分)的面積為_(kāi)_____;
(2)若三角形紙片的直角頂點(diǎn)不與點(diǎn)O,F(xiàn)重合,且兩條直角邊與正方形相鄰兩邊相交,當(dāng)這個(gè)三角形紙片與正方形OEFG重疊部分的面積是正方形面積的一半時(shí),試確定三角形紙片直角頂點(diǎn)的坐標(biāo)(不要求寫(xiě)出求解過(guò)程),并畫(huà)出此時(shí)的圖形.

解:(1)S=OE•EF=

(2)如圖,正方形GFEO的面積為1,當(dāng)重合的面積為正方形GFEO的面積的一半時(shí),有兩種情況:
①四邊形OSCB的面積為時(shí),易證得四邊形ACOD為正方形,△ABC≌△DSC,有四邊形OSCB的面積與正方形ACOD的面積相等,故有OD=OA=即點(diǎn)C的坐標(biāo)為().
②四邊形FSCB的面積為時(shí),易證得四邊形ACDF為正方形,△ABC≌△DSC,有四邊形FSCB的面積與正方形ACDO的面積相等,故有FD=FA=即點(diǎn)C的坐標(biāo)為(1-,1-).
分析:(1)S=OE•EF=;
(2)如圖,正方形GFEO的面積為1,當(dāng)重合的面積為正方形GFEO的面積的一半時(shí),有兩種情況:
①四邊形OSCB的面積為時(shí),易證得四邊形ACDO為正方形,△ABC≌△DSC,有四邊形OSCB的面積與正方形ACDO的面積相等,故有OD=OA=即點(diǎn)C的坐標(biāo)為(,).
②四邊形FSCB的面積為時(shí),易證得四邊形ACDF為正方形,△ABC≌△DSC,有四邊形FSCB的面積與正方形ACDO的面積相等,故有AD=FA=即點(diǎn)C的坐標(biāo)為(1-,1-).
點(diǎn)評(píng):本題利用了正方形的判定和性質(zhì),三角形的面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)設(shè)此拋物線(xiàn)與x軸交于A(yíng)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線(xiàn)段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線(xiàn)上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線(xiàn)上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線(xiàn)上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案