【題目】如圖是無(wú)蓋長(zhǎng)方體盒子的表面展開(kāi)圖.
(1)求表面展開(kāi)圖的周長(zhǎng)(粗實(shí)線的長(zhǎng));
(2)求盒子底面的面積.
【答案】解:(1)如圖所示:表面展開(kāi)圖的周長(zhǎng)為:2a+2b+4c;
(2)盒子的底面長(zhǎng)為:a﹣(b﹣c)=a﹣b+c.
盒子底面的寬為:b﹣c.
盒子底面的面積為:(a﹣b+c)(b﹣c)=ab﹣b2+2bc﹣ac﹣c2
【解析】(1)該幾何體的周長(zhǎng)是圖中粗實(shí)線的長(zhǎng)度:根據(jù)矩形的性質(zhì)進(jìn)行答題;
(2)根據(jù)圖示求得盒子的長(zhǎng)與寬,然后根據(jù)矩形的面積公式進(jìn)行解答.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用幾何體的展開(kāi)圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握沿多面體的棱將多面體剪開(kāi)成平面圖形,若干個(gè)平面圖形也可以圍成一個(gè)多面體;同一個(gè)多面體沿不同的棱剪開(kāi),得到的平面展開(kāi)圖是不一樣的,就是說(shuō):同一個(gè)立體圖形可以有多種不同的展開(kāi)圖.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)委員統(tǒng)計(jì)全班50位同學(xué)對(duì)語(yǔ)文、數(shù)學(xué)、英語(yǔ)、體育、音樂(lè)五個(gè)科目最喜歡情況,所得數(shù)據(jù)用表格與條形圖描述如下:
科目 | 語(yǔ)文 | 數(shù)學(xué) | 英語(yǔ) | 體育 | 音樂(lè) |
人數(shù) | 10 | a | 15 | 3 | 2 |
(1)表格中a的值為;
(2)補(bǔ)全條形圖;
(3)小李是最喜歡體育之一,小張是最喜歡音樂(lè)之一,計(jì)劃從最喜歡體育、音樂(lè)的人中,每科目各選1人參加學(xué)校訓(xùn)練,用列表或樹(shù)形圖表示所有結(jié)果,并求小李、小張至少有1人被選上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)CD的高度,他們先在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹(shù)頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹(shù)CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)已知﹣ 與xnym+n是同類(lèi)項(xiàng),求m、n的值;
(2)先化簡(jiǎn)后求值:( ) ,其中a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在課題學(xué)習(xí)后,同學(xué)們?yōu)榻淌掖皯粼O(shè)計(jì)一個(gè)遮陽(yáng)蓬,小明同學(xué)繪制的設(shè)計(jì)圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽(yáng)蓬,已知當(dāng)?shù)匾荒曛性谖鐣r(shí)的太陽(yáng)光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據(jù)以上數(shù)據(jù),計(jì)算出遮陽(yáng)蓬中CD的長(zhǎng)是(結(jié)果精確到0.1)(參考數(shù)據(jù):sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)( 。
A.1.2米
B.1.5米
C.1.9米
D.2.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,F(xiàn)在BD上,BC、AD相交于點(diǎn)E,且AB∥CD∥EF,
(1)圖中有哪幾對(duì)位似三角形,選其中一對(duì)加以證明;
(2)若AB=2,CD=3,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長(zhǎng)是( )
A.4
B.
C.3
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com