【題目】我校第二課堂開展后受到了學生的追捧,學期結(jié)束后對部分學生做了一次“我最喜愛的第二課堂”問卷調(diào)查(每名學生都填了調(diào)査表,且只選了一個項目),統(tǒng)計后趣味數(shù)學、演講與口才、信息技術(shù)、手工制作榜上有名.其中選信息技術(shù)的人數(shù)比選手工制作的少8人;選趣味數(shù)學的人數(shù)不僅比選手工制作的人多,且為整數(shù)倍;選趣味數(shù)學與選手工制作的人數(shù)之和是選演講與口才與選信息技術(shù)的人數(shù)之和的5倍;選趣味數(shù)學與選演講與口才的人數(shù)之和比選信息技術(shù)與選手工制作的人數(shù)之和多24人.則參加調(diào)查問卷的學生有________人。
【答案】48
【解析】
設(shè)選信息技術(shù)的有x人,選演講與口才有y人,則手工制作的有(x+8)人,選趣味數(shù)學的有a(x+8)人,根據(jù)題意列出方程組,結(jié)合實際情況討論求解即可.
設(shè)選信息技術(shù)的有x人,選演講與口才有y人,則手工制作的有(x+8)人,選趣味數(shù)學的有a(x+8)人,
根據(jù)題意得: ,
②可變形為:(a-1)(x+8)=24+x-y③,
①+③,得2a(x+8)=24+6x+4y,
即a=;
①-③,得x+3y=20.
∵x、y都是正整數(shù),
∴或或或或或
當、、、、,
a=都不是整數(shù),不合題意.
當時,a==3.
∴選信息技術(shù)的有2人,選演講與口才的有6人,選手工制作的有10人,選趣味數(shù)學的有30人,
由于每名學生都填了調(diào)査表,且只選了一個項目,
所以參加調(diào)查問卷的學生有2+6+10+30=48(人).
故答案為:48
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有________名;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為________度;
(4)若該校共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(a,﹣)在直線y=﹣上,AB∥y軸,且點B的縱坐標為1,雙曲線y=經(jīng)過點B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點B的直線與雙曲線y=的另一個交點為點C,且△ABC的面積為.
①求直線BC的解析式;
②過點B作BD∥x軸交直線y=﹣于點D,點P是直線BC上的一個動點.若將△BDP以它的一邊為對稱軸進行翻折,翻折前后的兩個三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3經(jīng)過x軸上的A,B兩點,與y軸交于點C,線段BC與拋物線的對稱軸相交于點D,點E為y軸上的一個動點.
(1)求直線BC的函數(shù)解析式,并求出點D的坐標;
(2)設(shè)點E的縱坐標為為m,在點E的運動過程中,當△BDE中為鈍角三角形時,求m的取值范圍;
(3)如圖2,連結(jié)DE,將射線DE繞點D順時針方向旋轉(zhuǎn)90°,與拋物線交點為G,連結(jié)EG,DG得到Rt△GED.在點E的運動過程中,是否存在這樣的Rt△GED,使得兩直角邊之比為2:1?如果存在,求出此時點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,點M在x軸的正半軸上,⊙M交x軸于A、B兩點,交y軸C、D于兩點,且C為弧AE的中點,AE交y軸于點G點,若點C的坐標為(0,2).
(1)連接MG、BC,求證:MG∥BC;
(2)若CE∥AB,直線y=kx﹣1(k≠0)將四邊形ACEB面積二等分,求k的值;
(3)如圖2,過O、P(2,2)作⊙O1交x軸正半軸于G,交y軸負半軸于H,I為△GOH的內(nèi)心,過I作IN⊥GH于N,當⊙O1的大小變化時,試說明GN﹣NH的值不變并求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一元二次方程中,有著名的韋達定理:對于一元二次方程,如果方程有兩個實數(shù)根,那么(說明:定理成立的條件)。比如方程中,,所以該方程有兩個不等的實數(shù)根,記方程的兩根為,,那么+=, =,請根據(jù)閱讀材料解答下列各題:
(1)已知方程的兩根為、,且 >,求下列各式的值:
① ②
(2)已知是一元二次方程的兩個實數(shù)根.
①是否存在實數(shù),使成立?若存在,求出的值;若不存在,請說明理由.
②求使的值為整數(shù)的實數(shù)的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點 C作AD的垂線 EF交直線 AD于點 E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時間x(分)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象解答下列問題:
(1)請寫出甲的騎行速度為 米/分,點M的坐標為 ;
(2)求甲返回時距A地的路程y與時間x之間的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);
(3)請直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時間兩人距C地的路程相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.
(1)求AC的長;
(2)先將△ABC向右平移2個單位得到△A′B′C′,寫出A點的對應點A′的坐標;
(3)再將△ABC繞點C按逆時針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點對應點A1的坐標.
(4)求點A到A′所畫過痕跡的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com