(2012•寧津縣二模)如圖所示,我班同學組織課外實踐活動,預測量一建筑物的高度,在建筑物附近一斜坡A點測得建筑物頂端D的仰角為30°,在坡底C點測得建筑物頂端D的仰角為60°,已知A點的高度AB為20米,AC的坡度為1:1(即AB:BC=1:1),且B、C、E三點在同一條直線上,請根據(jù)以上條件求出建筑物DE的高度(測量器的高度忽略不計).
分析:根據(jù)矩形性質(zhì)得出AF=BE,EF=AB=20,再利用銳角三角函數(shù)的性質(zhì)求出CE=
3
3
x,再利用DF=AF•tan30°,DE=DF+FE求出DE的長即可.
解答:解:如圖,過點A作AF⊥DE于F,
則四邊形ABEF為矩形.
故AF=BE,EF=AB=20.
設(shè) DE為x,
在直角三角形CDE中,CE=
DE
tan∠DCE
=
DE
tan60°
=
3
3
x
,
在直角三角形ABC中,BC=AB=20,
在直角三角形AFD中,∵DF=AF•tan30°=
3
3
(BC+CE)=
3
3
(20+
3
3
x),
∴DE=DF+FE=
3
3
(20+
3
3
x)+20=x,
解方程得:x=30+10
3
(米),
答:建筑物的高度為30+10
3
米.
點評:此題主要考查了解直角三角形的應用以及坡度的定義,根據(jù)銳角三角函數(shù)的關(guān)系得出DF的長是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•寧津縣二模)無理數(shù)-
5
的倒數(shù)的絕對值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧津縣二模)下列各命題正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧津縣二模)已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的有( 。
①當AB=BC時,它是菱形;②當AC⊥BD時,它是菱形;③當∠ABC=90°時,它是矩形;④當AC=BD時,它是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧津縣二模)在6張完全相同的卡片上分別畫有線段、等邊三角形、直角梯形、正方形、正五邊形和圓各一個圖形.從這6張卡片隨機地抽取一張卡片,則這張卡片上的圖形是中心對稱圖形的概率是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧津縣二模)五一期間,工藝商場按標價銷售某種工藝品時,每件可獲利45元;按標價的八五折銷售該工藝品8件與將標價降低33元銷售該工藝品10件所獲利潤相等.該工藝品每件的進價是
155
155
元.

查看答案和解析>>

同步練習冊答案