如圖,已知開口向上的拋物線經(jīng)過原點,與x軸的另一個交點為A,OA=6,P為拋物線的頂點,且∠APO=90°.

   (1)求這個拋物線的解析式;

   (2)若將這個拋物線的頂點向上平移到x軸上,則新的拋物線的解析式為               ;

   (3)新的拋物線與y軸交于點B,求△BOP的面積SBOP.

解:(1)P(3,-3)

y=a(x-3)2-3,

    過原點(0,0)

∴9a-3=0,a=

  

   (2)

   (3)與y軸交點B(0,3),P(0,3),O(0,0)

S△BOP=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點,并且頂點A在雙曲線上.
(1)求過頂點A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點P始終在C1上,證明:拋物線C2一定經(jīng)過A點;
(3)設(shè)(2)中的拋物線C2的對稱軸PF與x軸交于F點,且與雙曲線交于E點,當(dāng)D、O、E精英家教網(wǎng)、F四點組成的四邊形的面積為16.5時,先求出P點坐標(biāo),并在直線y=x上求一點M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點,并且頂點A在雙曲線上.
(1)求過頂點A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點P始終在C1上,證明:拋物線C2一定經(jīng)過A點;
(3)設(shè)(2)中的拋物線C2的對稱軸PF與x軸交于F點,且與雙曲線交于E點,當(dāng)D、O、E、F四點組成的四邊形的面積為16.5時,先求出P點坐標(biāo),并在直線y=x上求一點M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知開口向上的拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊,如圖1所示),且數(shù)學(xué)公式

(1)求a的值;
(2)若直線y=-2x+b與拋物線C1只有一個交點,且分別與x、y軸相交于C、D兩點,求點P到直線CD的距離;
(3)如圖2,點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C2.拋物線C2的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊,如圖2所示),當(dāng)以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年福建省漳州市龍文中學(xué)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點,并且頂點A在雙曲線上.
(1)求過頂點A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點P始終在C1上,證明:拋物線C2一定經(jīng)過A點;
(3)設(shè)(2)中的拋物線C2的對稱軸PF與x軸交于F點,且與雙曲線交于E點,當(dāng)D、O、E、F四點組成的四邊形的面積為16.5時,先求出P點坐標(biāo),并在直線y=x上求一點M,使|MD-MP|的值最大.

查看答案和解析>>

同步練習(xí)冊答案