精英家教網 > 初中數學 > 題目詳情
(2006•岳陽)如圖拋物線y=,x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC:
①求E點坐標;
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點P,使得△PAD的周長最?若存在,請求出P點的坐標;若不存在,請說明理由.
【答案】分析:(1)分別令x=0以及y=0求出A、B、C三點的坐標.
(2)依題意得出BC∥AE,又已知A、B、C的坐標易求出點E的坐標,又因為四邊形AEBC是平行四邊形且∠ACB=90°可得四邊形AEBC是矩形.
(3)作點A關于BC的對稱點A′,連接′'D與直線BC交于點P.則可得點P是使△PAD周長最小的點,然后求出直線A′D,直線BC的函數解析式聯立方程求出點P的坐標.
解答:解:(1)y=-,
令x=0,得y=
令y=0,
,
即x2+2x-3=0,
∴x1=1,x2=-3
∴A,B,C三點的坐標分別為A(-3,0),B(1,0),C(0,)(3分)

(2)①過點E作EF⊥AB于F,
∵C(0,),
∴EF=,
∵B(1,0),
∴AF=1,
∴OF=OA-AF=3-1=2,
∴E(-2,-)(5分)
②四邊形AEBC是矩形.
理由:四邊形AEBC是平行四邊形,且∠ACB=90°(7分)

(3)存在.(8分)
D(-1,
作出點A關于BC的對稱點A′,連接A′D與直線BC交于點P.
則點P是使△PAD周長最小的點.(10分)
∵AO=3,
∴FO=3,
CO=,
∴A′F=2
∴求得A′(3,2
過A′、D的直線y=
過B、C的直線y=-
兩直線的交點P(-,).(12分)
點評:本題綜合考查了二次函數的有關知識以及利用待定系數法求出函數解析式,難度中上.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2006•岳陽)如圖拋物線y=,x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC:
①求E點坐標;
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點P,使得△PAD的周長最?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省麗水市縉云縣新建中學第二次月考數學試卷(解析版) 題型:解答題

(2006•岳陽)如圖拋物線y=,x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC:
①求E點坐標;
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點P,使得△PAD的周長最?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年湖南省岳陽市中考數學試卷(解析版) 題型:解答題

(2006•岳陽)如圖拋物線y=,x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC:
①求E點坐標;
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點P,使得△PAD的周長最?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年湖南省岳陽市中考數學試卷(解析版) 題型:解答題

(2006•岳陽)如圖,在菱形ABCD中,∠A=60°,AB=4,E是邊AB上一動點,過點E作EF⊥AB交AD的延長線于點F,交BD于點M.
(1)請判斷△DMF的形狀,并說明理由.
(2)設EB=x,△DMF的面積為y,求y與x之間的函數關系式.并寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案