已知:如圖9,在△ABC中,已知點D在BC上,聯(lián)結(jié)AD,使得,DC=3且 ﹦1﹕2.
(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點C落點E處,AE交邊BC于點F,且AB∥DE,求的值.
(1);(2).
解析試題分析:(1)根據(jù)等高的三角形的面積的比等于底邊的比求出BD=2CD,然后求出BC,再根據(jù)兩組角對應(yīng)相等兩三角形相似求出△ABC和△DAC相似,然后根據(jù)相似三角形對應(yīng)邊成比例可得AC:CD="BC:AC" ,代入數(shù)據(jù)計算即可得解;
(2)根據(jù)翻折的性質(zhì)可得∠E=∠C,DE=CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根據(jù)兩組角對應(yīng)相等兩三角形相似求出△EFD和△ADC相似,根據(jù)相似三角形面積的比等于相似比的平方求解即可.
試題解析:
(1)∵ ﹦1﹕2
∴CD:BD=1:2
∵DC="3" ∴BD="6"
在△ACD和△BCA中,∠CAD=∠B,∠C=∠C
∴△ACD∽△BCA
∴即
∴.
(2)∵翻折
∴∠C=∠E,∠1=∠2,DE="DC=3"
∵AB∥DE
∴∠3=∠B
∵∠1=∠B
∴∠1=∠3
∴△ACD∽△DEF
∴.
考點:1.相似三角形的判定與性質(zhì);2.翻折變換(折疊問題).
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,方格紙中有一條美麗可愛的小金魚.
(1)在同一方格紙中,畫出將小金魚圖案繞原點O旋轉(zhuǎn)180°后得到的圖案;
(2)在同一方格紙中,并在軸的右側(cè),將原小金魚圖案原點O為位似中心放大,使它們的位似比為1:2,畫出放大后小金魚的圖案.
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當(dāng)點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).
(1)當(dāng)t= s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,
(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知△ABC是等腰直角三角形,∠A=90°,點D是腰AC上的一個動點,過C作CE垂直于BD的延長線,垂足為E.
(1)若BD是AC邊上的中線,如圖1,求的值;
(2)若BD是∠ABC的角平分線,如圖2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G. 如果,求的值.
他的做法是:過點E作EH∥AB交BG于點H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為 ,CG和EH的數(shù)量關(guān)系為 ,的值為 .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為 (用含a的代數(shù)式表示).
(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F. 如果,那么的值為 (用含m,n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com