一個多邊形中,有且只有4個角是鈍角,則這個多邊形最多是

[  ]

A.6邊形
B.7邊形
C.8邊形
D.9邊形
答案:B
解析:

8邊形、9邊形它們的內角不只4個鈍角.

所以一個多邊形中,有且只有4個角是鈍角,則這個多邊形最多是7邊形


提示:

8邊形、9邊形它們的內角不只4個鈍角.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

26、閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點旋轉180°得到的,稱為△M經過R變換得到△M2.以下所有操作中每一個三角形只可進行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經過R變換得到△A1,又由△A1經過
R
變換得到△A2,再由△A2經過
T
變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有
9
個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有
121
個基本三角形;
應用:
(3)若△A是正三角形,你認為通過以上兩種變換可以得到的正多邊形是
正六邊形,正三角形
;
(4)請你用兩次R變換和一次T變換構成一個四邊形,畫出示意圖,并仿照下圖作出標記.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

七巧板游戲是將一個正方形分割成七塊,然后用這七塊拼接成豐富多彩的幾何圖形.如圖(a)是正方形的一種分割方法,并在每塊上標了號碼.
(1)設正方形網(wǎng)格的邊長為1,則面積為2的有
 
號圖形;
(2)只改變圖(a)中的7號圖形的位置,使它和其他部分拼成一個新的多邊形,請在圖(b)中畫出所拼的圖形(只需畫出7號圖形);
(3)將這副七巧板的七塊圖形重新拼成一個和圖(a)、圖(b)形狀不同的多邊形,(不留縫隙且不相互重疊),請在圖(c)中畫出所拼的圖形,并使多邊形的頂點落在格點上.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點旋轉180°得到的,稱為△M經過R變換得到△M2.以下所有操作中每一個三角形只可進行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經過R變換得到△A1,又由△A1經過________變換得到△A2,再由△A2經過________變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有________個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有________個基本三角形;
應用:
(3)若△A是正三角形,你認為通過以上兩種變換可以得到的正多邊形是________;
(4)請你用兩次R變換和一次T變換構成一個四邊形,畫出示意圖,并仿照下圖作出標記.

查看答案和解析>>

科目:初中數(shù)學 來源:鼓樓區(qū)二模 題型:解答題

閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點旋轉180°得到的,稱為△M經過R變換得到△M2.以下所有操作中每一個三角形只可進行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經過R變換得到△A1,又由△A1經過______變換得到△A2,再由△A2經過______變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有______個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有______個基本三角形;
應用:
(3)若△A是正三角形,你認為通過以上兩種變換可以得到的正多邊形是______;
(4)請你用兩次R變換和一次T變換構成一個四邊形,畫出示意圖,并仿照下圖作出標記.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省南京市鼓樓區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點旋轉180°得到的,稱為△M經過R變換得到△M2.以下所有操作中每一個三角形只可進行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經過R變換得到△A1,又由△A1經過______變換得到△A2,再由△A2經過______變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有______個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有______個基本三角形;
應用:
(3)若△A是正三角形,你認為通過以上兩種變換可以得到的正多邊形是______;
(4)請你用兩次R變換和一次T變換構成一個四邊形,畫出示意圖,并仿照下圖作出標記.

查看答案和解析>>

同步練習冊答案