【題目】閱讀材料:
用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當a=0時,才能得到這個式子的最小值1.同樣,因為-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時,才能得到這個式子的最大值1.
(1)當x=___時,代數(shù)式3(x+3)2+4有最小____(填寫大或小)值為____.
(2)當x=_____時,代數(shù)式-2x2+4x+3有最大____(填寫大或。┲禐____.
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
【答案】(1)-3,小,4;(2)1,大,5;(3)當邊長為4米時,花園面積最大為32m2.
【解析】
(1)由完全平方式的最小值為0,得到x=-3時,代數(shù)式的最小值為4;
(2)將代數(shù)式前兩項提取-2,配方為完全平方式,根據(jù)完全平方式的最小值為0,即可得到代數(shù)式的最大值及此時x的值;
(3)設(shè)垂直于墻的一邊長為xm,根據(jù)總長度為16m,表示出平行于墻的一邊為(16-2x)m,表示出花園的面積,整理后配方,利用完全平方式的最小值為0,即可得到面積的最大值及此時x的值.
(1)∵(x+3)2≥0,
∴當x=-3時,(x+3)2的最小值為0,
則當x=-3時,代數(shù)式3(x+3)2+4的最小值為4;
(2)代數(shù)式-2x2+4x+3=-2(x-1)2+5,
則當x=1時,代數(shù)式-2x2+4x+3的最大值為5;
(3)設(shè)垂直于墻的一邊為xm,則平行于墻的一邊為(16-2x)m,
∴花園的面積為x(16-2x)=-2x2+16x=-2(x2-8x+16)+32=-2(x-4)2+32,
則當邊長為4米時,花園面積最大為32m2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個不相等的實數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,方程x2-6x+8=0的兩個根是2和4,則方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)六七年級有350名同學(xué)去春游,已知2輛A型車和1輛B型車可以載學(xué)生100人;1輛A型車和2輛B型車可以載學(xué)生110人.
(1)A、B型車每輛可分別載學(xué)生多少人?
(2)若租一輛A需要100元,一輛B需120元,請你設(shè)計租車方案,使得恰好運送完學(xué)生并且租車費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D,那么∠DAC的度數(shù)為( )
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅星期天從家里出發(fā)騎自行車去舅舅家,當她騎了一段路時,想起要買個禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,如圖是她本次去舅舅家所用的時間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小紅家到舅舅家的路程是_______米,小紅在商店停留了_______分鐘;
(2)在整個去舅舅家的途中哪個時間段小紅騎車速度最快,最快的速度是多少米/分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把一塊含的直角三角板的邊放置于長方形直尺的邊上.
(1)填空:______,_______;
(2)最短直角邊與的夾角.
①現(xiàn)把三角板如圖2擺放,且點恰好落在邊上時,求、的度數(shù)(寫出求解過程,結(jié)果用含的代數(shù)式表示);
②現(xiàn)把圖1中的三角板繞點逆時針轉(zhuǎn)動,當時,存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直.例如:當時,,;直接寫出其他所有的值和對應(yīng)的那兩條垂線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與x軸交于A,B兩點,與y軸正半軸交于點C,且A(-1,0).
(1)一元二次方程ax2-2ax+c=0的解是 ;
(2)一元二次不等式ax2-2ax+c>0的解集是 ;
(3)若拋物線的頂點在直線y=2x上,求此拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com