如圖,在等邊△ABC中,D,E分別是BC,AC上的點,且BD=CE,AD與BE相交于點P,則∠1+∠2的度數(shù)是


  1. A.
    45°
  2. B.
    55°
  3. C.
    60°
  4. D.
    75°
C
分析:在等邊△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,由此可以證明△ABD≌△BCE,根據(jù)全等三角形的性質(zhì)得到∠CBE=∠1,而∠CBE+∠2=60°,所以∠1+∠2=60°.
解答:∵在等邊△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,
∴△ABD≌△BCE,
∴∠CBE=∠1,
而∠CBE+∠2=60°,
∴∠1+∠2=60°.
故選C.
點評:本題主要考查了等邊三角形的性質(zhì),全等三角形的判定等內(nèi)容,比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案