(2013•南崗區(qū)一模)已知:如圖1,Rt△ABC中,∠ACB=90°,AM是△ABC的角平分線,過(guò)點(diǎn)B作AM的垂線,交AM的延長(zhǎng)線于點(diǎn)D,過(guò)點(diǎn)D作AB的垂線,垂足為E.
(1)求證:BC=2DE;
(2)如圖2,作∠ABC的平分線交AC于F,連接FD交BC于G,若DG=5,F(xiàn)G=l5,求線段DE的長(zhǎng).
分析:(1)延長(zhǎng)AC、BD交于點(diǎn)K.先證明∠BKC=∠DBE,再由∠BCK=∠DEB=90°,得出△BDE∽△KBC,根據(jù)相似三角形對(duì)應(yīng)邊的比相等得出DE:BC=DB:BK,從而得出BC=2DE;
(2)過(guò)F作FN⊥BK于N,過(guò)D作DT⊥AC于T.由DT∥BC,得出FC:CT=FG:GD=15:5,設(shè)FC=3a,則CT=a.再利用AAS證明△KNF≌△HNB,得出FK=BH=5a,然后證明△CFH∽△CBK,則CH:CK=CF:CB,求出CH=a,BC=6a,DE=3a,再由CG:DT=FC:FT,得到CG=
9
4
a,在Rt△CFG中,由于勾股定理得出FG=
15
4
a=15,求出a=4,進(jìn)而求出DE=12.
解答:(1)證明:如圖1,延長(zhǎng)AC、BD交于點(diǎn)K.
∵AD⊥BK,
∴∠ADB=∠ADK=90°.
∵AD平分∠CAB,
∴∠1=∠2,
∴90°-∠1=90°-∠2,
∴∠AKD=∠ABD,即∠BKC=∠DBE.
∵∠ACB=90°=∠BCK=∠DEB,
∴△BDE∽△KBC,
∴DE:BC=DB:BK,
∵AK=AB,
∴DB=DK=
1
2
BK,
∴BC=2DE;

(2)解:如圖2,過(guò)F作FN⊥BK于N,過(guò)D作DT⊥AC于T.
∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=90°,
∴∠1+∠3=45°,
∵∠1=∠5,
∴∠3+∠5=45°.
∵DT⊥AC,BC⊥AC,
∴DT∥BC,
∴FC:CT=FG:GD=15:5,
設(shè)FC=3a,則CT=a.
∵Rt△CKB中,BD=DK,DT∥BC,
∴CT=TK=a,∴CK=2a,F(xiàn)K=5a.
∵∠FNB=90°,∠FBK=45°,
∴FN=BN.
∵∠NFK=∠NBH,∠KNF=∠HNB,F(xiàn)N=BN,
∴△KNF≌△HNB,
∴FK=BH=5a.
∵∠CFH=∠CBK,∠FCH=∠BCK,
∴△CFH∽△CBK,
∴CH:CK=CF:CB,
即2a×3a=CH(CH+5a),
∴CH2+5a×CH-6a2=0,
∴CH=a或CH=-6a(舍去),
∴BC=a+5a=6a,
由(1)得DE=
1
2
BC=3a.
∵∠1=∠2,
∴DT=DE=3a,
∴CG:DT=FC:FT,即CG:3a=3a:4a,
∴CG=
9
4
a.
∵Rt△CFG中,F(xiàn)G2=CF2+CG2
∴FG=
15
4
a=15,
∴a=4,
∴DE=3a=12.
點(diǎn)評(píng):本題考查了全等三角形、相似三角形的判定與性質(zhì),勾股定理,有一定難度,通過(guò)作輔助線構(gòu)建全等三角形與相似三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)先化簡(jiǎn),再求代數(shù)式(
1
a+1
-
a-2
a2-1
1
a+1
的值,其中x=2sin60°+tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)在下面由陰影組成的圖案中,是軸對(duì)稱(chēng)圖形的圖案是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)下列的四個(gè)立體圖形如圖擺放,其中俯視圖為矩形的立體圖形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)如圖,E是AB邊上的中點(diǎn),將△ABC沿過(guò)E的直線折疊,使點(diǎn)A落在BC上F處,折痕交邊AC于點(diǎn)D,若BC=100,則折痕DE的長(zhǎng)度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)不等式組
2x-1≥0
x-1<0
的解集是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案