(2012•大興區(qū)一模)已知:如圖,N、M是以O(shè)為圓心,1為半徑的圓上的兩點(diǎn),B是
MN
上一動點(diǎn)(B不與點(diǎn)M、N重合),∠MON=90°,BA⊥OM于點(diǎn)A,BC⊥ON于點(diǎn)C,點(diǎn)D、E、F、G分別是線段OA、AB、BC、CO的中點(diǎn),GF與CE相交于點(diǎn)P,DE與AG相交于點(diǎn)Q.
(1)四邊形EPGQ
(填“是”或者“不是”)平行四邊形;
(2)若四邊形EPGQ是矩形,求OA的值;
(3)連接PQ,求3PQ2+OA2的值.
分析:(1)由BA⊥OM,BC⊥ON,∠AOC=90°,可判定四邊形OABC是矩形,即可得AB∥OC,AB=OC,又由E、G分別是AB、CO的中點(diǎn),即可得四邊形AECG為平行四邊形,連接OB,點(diǎn)D、E、F、G分別是線段OA、AB、BC、CO的中點(diǎn),根據(jù)三角形中位線的性質(zhì),即可得PG∥EQ,即可判定四邊形EPGQ是平行四邊形;
(2)易得△AED∽△BCE,根據(jù)相似三角形的對應(yīng)邊成比例與勾股定理,即可求得OA的長;
(3)連接GE交PQ于O′,易得O′P=O′Q,O′G=0′E,然后過點(diǎn)P作OC的平行線分別交BC、GE于點(diǎn)B′、A′,由△PCF∽△PEG,根據(jù)相似三角形的對應(yīng)邊成比例與勾股定理,即可求得3PQ2+OA2的值.
解答:(1)是.
證明:連接OB,如圖①,

∵BA⊥OM,BC⊥ON,
∴∠BAO=∠BCO=90°,
∵∠AOC=90°,
∴四邊形OABC是矩形.
∴AB∥OC,AB=OC,
∵E、G分別是AB、CO的中點(diǎn),
∴AE∥GC,AE=GC,
∴四邊形AECG為平行四邊形.
∴CE∥AG,
∵點(diǎn)D、E、F、G分別是線段OA、AB、BC、CO的中點(diǎn),
∴GF∥OB,DE∥OB,
∴PG∥EQ,
∴四邊形EPGQ是平行四邊形;

(2)解:如圖②,

∵?EPGQ是矩形.
∴∠AED+∠CEB=90°.
又∵∠DAE=∠EBC=90°,
∴∠AED=∠BCE.
∴△AED∽△BCE,
AD
BE
=
AE
BC
,
設(shè)OA=x,AB=y,則
x
2
y
2
=
y
2
:x,
得y2=2x2,
又∵OA2+AB2=OB2,
即x2+y2=12
∴x2+2x2=1,
解得:x=
3
3

即當(dāng)四邊形EPGQ是矩形時(shí),OA的長度為
3
3


(3)解:如圖③,連接GE交PQ于O′,

∵四邊形EPGQ是平行四邊形,
∴O′P=O′Q,O′G=0′E.
過點(diǎn)P作OC的平行線分別交BC、GE于點(diǎn)B′、A′.
由△PCF∽△PEG得,
PG
PF
=
PE
PC
=
GE
FC
=
2
1
,
∴PA′=
2
3
A′B′=
1
3
AB,GA′=
1
3
GE=
1
3
OA,
∴A′O′=
1
2
GE-GA′=
1
6
OA,
在Rt△PA′O′中,PO′2=PA′2+A′O′2,
PQ2
4
=
AB2
9
+
OA2
36
,
又∵AB2+OA2=1,
∴3PQ2=AB2+
1
3
,
∴OA2+3PQ2=OA2+(AB2+
1
3
)=
4
3
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、矩形的判定與性質(zhì)以及勾股定理等知識.此題綜合性較強(qiáng),難度較大,解題的關(guān)鍵是注意準(zhǔn)確作出輔助線,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大興區(qū)一模)已知:如圖,在平行四邊形ABCD中,AB=4,AD=7,∠ABC的平分線交AD于點(diǎn)E,則ED的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大興區(qū)一模)若
x+y-3
+(y+2)2=0
,則x-y的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大興區(qū)一模)如圖,圓柱底面直徑AB、母線BC均為4cm,動點(diǎn)P從A點(diǎn)出發(fā),沿著圓柱的側(cè)面移動到BC的中點(diǎn)S的最短距離(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大興區(qū)一模)分解因式:x4-x2y2=
x2(x+y)(x-y)
x2(x+y)(x-y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大興區(qū)一模)
9
+2cos60°+(
1
2
)-1-20120

查看答案和解析>>

同步練習(xí)冊答案