用換元法解方程x2+x+1=時(shí),若設(shè)x2+x=y,則原方程可化為( )
A.y2+y+2=0
B.y2-y-2=0
C.y2-y+2=0
D.y2+y-2=0
【答案】分析:根據(jù)方程的特點(diǎn),設(shè)y=x2+x,可將方程中的x全部換成y,轉(zhuǎn)化為關(guān)于y的分式方程,去分母轉(zhuǎn)化為一元二次方程.
解答:解:把x2+x=y代入原方程得:y+1=2•,方程兩邊同乘以y整理得:y2+y-2=0.
故選D.
點(diǎn)評(píng):換元法解分式方程時(shí)常用方法之一,它能夠把一些分式方程化繁為簡(jiǎn),化難為易,對(duì)此應(yīng)注意總結(jié)能用換元法解的分式方程的特點(diǎn),尋找解題技巧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程x2+2x-
20
x2+2x
=8
,若設(shè)x2+2x=y,則原方程可化為( 。
A、y2-8y-20=0
B、8y2-20y+1=0
C、y2+8y-20=0
D、20y2+8y-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
x2
(x-1)2
-
5x
x-1
+6=0,如果設(shè)y=
x
x-1
,那么原方程可變形為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法或解法正確的個(gè)數(shù)有( 。
(1)用換元法解方程x2+x+1=
2
x2+x
,設(shè)y=x2+x,則原方程可化為y+1=
2
y
;
(2)平分弦的半徑垂直于弦,并且平分弦所對(duì)的一條;
(3)平面直角坐標(biāo)系內(nèi)的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng);
(4)“對(duì)頂角相等”的逆命題是真命題
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
x2+2x
+x2+2x-2=0時(shí),若設(shè)
x2+2x
=y,則原方程可化為整式方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
x2+1
x+1
-
2x+2
x2+1
=3
時(shí),下列換元方法中最適宜的是( 。
A、x2+1=y
B、
1
x2+1
=y
C、
1
x+1
=y
D、
x2+1
x+1
=y

查看答案和解析>>

同步練習(xí)冊(cè)答案