【題目】如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F分別是OB,OC的中點,順次連接點D,G,F,E.
(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關系?(直接寫出答案,不需要說明理由)
【答案】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結論;
(2)解法一:點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.
解法二:點O在以A為圓心,BC為半徑的一個圓上,但不包括射線CD、射線BE與⊙A的交點.
解法三:過點A作BC的平行線l,點O在以A為圓心,BC為半徑的一個圓上,但不包括l與⊙A的兩個交點.
【解析】
試題(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結論;
(2)根據(jù)三角形的中位線定理結合菱形的判定方法分析即可.
(1)∵D、E分別是邊AB、AC的中點.
∴DE∥BC,DE=BC.
同理,GF∥BC,GF=BC.
∴DE∥GF,DE=GF.
∴四邊形DEFG是平行四邊形;
(2)解法一:點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.
解法二:點O在以A為圓心,BC為半徑的一個圓上,但不包括射線CD、射線BE與⊙A的交點.
解法三:過點A作BC的平行線l,點O在以A為圓心,BC為半徑的一個圓上,但不包括l與⊙A的兩個交點.
科目:初中數(shù)學 來源: 題型:
【題目】臨近期末,歷史老師為了了解所任教的甲、乙兩班學生的歷史基礎知識背誦情況,從甲、乙兩個班學生中分別隨機抽取了20名學生來進行歷史基礎知識背誦檢測,滿分50分,得到學生的分數(shù)相關數(shù)據(jù)如下:
甲 | 32 | 35 | 46 | 23 | 41 | 49 | 37 | 41 | 36 | 41 |
37 | 44 | 39 | 46 | 46 | 41 | 50 | 43 | 44 | 49 |
乙 | 25 | 34 | 43 | 46 | 35 | 41 | 42 | 46 | 44 | 42 |
47 | 45 | 42 | 34 | 39 | 47 | 49 | 48 | 45 | 42 |
通過整理,分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
甲 | 41 | 41 | |
乙 | 41.8 | 42 |
歷史老師將乙班成績按分數(shù)段(,,,,,表示分數(shù))繪制成扇形統(tǒng)計圖,如圖(不完整)
請回答下列問題:
(1)_______分;
(2)扇形統(tǒng)計圖中,所對應的圓心角為________度;
(3)請結合以上數(shù)據(jù)說明哪個班背誦情況更好(列舉兩條理由即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.
(1)試說明:△ABC是直角三角形.
(2)請求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖 1,在△ABC 中,∠ABC 的平分線 BF 交 AC 于 F, 過點 F 作 DF∥BC, 求證:BD=DF.
(2)如圖 2,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的平分線 CF 相交于 F,過點 F 作 DE∥BC,交直線 AB 于點 D,交直線 AC 于點 E.那么 BD,CE,DE 之間存在什么關系?并證明這種關系.
(3)如圖 3,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的外角平分線 CF 相交于 F,過點 F 作 DE∥BC,交直線 AB 于點D,交直線 AC 于點 E.那么 BD,CE,DE 之間存在什么關系?請寫出你的猜想.(不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形中,點,分別在、上,且.
(1)試探索線段、的關系,寫出你的結論并說明理由;
(2)連接、,分別取、、、的中點、、、,四邊形是什么特殊平行四邊形?請在圖②中補全圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊含30°角的直角三角板(如圖),它的斜邊AB=8cm,里面空心△DEF的各邊與△ABC的對應邊平行,且各對應邊的距離都是1cm,那么△DEF的周長是( )
A、5cm B、6cm C、(6-)cm D、(3+)cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生1800人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識 達到“了解”和“基本了解”程度的總人數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com