【題目】△ABC中,AD是BC邊上的高,BD=3,CD=1,AD=2,P、Q、R分別是BC、AB、AC邊上的動(dòng)點(diǎn),則△PQR周長(zhǎng)的最小值為

【答案】
【解析】解:如圖1中,

作P點(diǎn)關(guān)于AB的對(duì)稱(chēng)點(diǎn)P′,作P點(diǎn)關(guān)于AC的對(duì)稱(chēng)點(diǎn)P″,連接P′P″,與AB交于點(diǎn)Q′,與AC交于點(diǎn)R′,連接PP′交AB于M,連接PP″交AC于N,
此時(shí)△PQ′R′的周長(zhǎng)最小,這個(gè)最小值=P′P″,
∵PM=MP′,PN=NP″,
∴P′P″=2MN,
∴當(dāng)MN最小時(shí)P′P″最。
如圖2中,

∵∠AMP=∠ANP=90°,
∴A、M、P、N四點(diǎn)共圓,線(xiàn)段AP就是圓的直徑,MN是弦,
∵∠MAN是定值,
∴直徑AP最小時(shí),弦MN最小,
∴當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),PA最小,此時(shí)MN最。
如圖3中,

∵在RT△ABD中,∠ADB=90°,AD=2,DB=3,

在RT△ADC中,∵∠ADC=90°,AD=2,CD=1,

∵DM⊥AB,DN⊥AC,
ACDN=DCAD,

∵∠MAD=∠DAB,∠AMD=∠ADB,
∴△AMD∽△ADB,

∴AD2=AMAB,同理AD2=ANAC,
∴AMAB=ANAC,

∵∠MAN=∠CAB,
∴△AMN∽△ACB,

∴MN= ,
∴△PQR周長(zhǎng)的最小值=P′P″=2MN=
故答案為
如圖1中,作P點(diǎn)關(guān)于AB的對(duì)稱(chēng)點(diǎn)P′,作P點(diǎn)關(guān)于AC的對(duì)稱(chēng)點(diǎn)P″,連接P′P″,與AB交于點(diǎn)Q′,與AC交于點(diǎn)R′,連接PP′交AB于M,連接PP″交AC于N,此時(shí)△PQ′R′的周長(zhǎng)最小,這個(gè)最小值=P′P″,再證明P′P″=2MN,MN最小時(shí),△PQR周長(zhǎng)最小,利用圖2證明當(dāng)點(diǎn)P與點(diǎn)D重合時(shí)MN最小,在圖3中利用相似三角形的性質(zhì)求出MN的最小值即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ACB=90°,BC=4,如圖1,點(diǎn)P從C出發(fā)向點(diǎn)B運(yùn)動(dòng),點(diǎn)R是射線(xiàn)PB上一點(diǎn),PR=3CP,過(guò)點(diǎn)R作QR⊥BC,且QR=aCP,連接PQ,當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)CP=x,△ABC與△PQR重合部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤<x≤m,m<x≤n時(shí),函數(shù)的解析式不同).
(1)a的值為;
(2)求出S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,用線(xiàn)段順次連結(jié)點(diǎn)A(-2,0),B(0,3),C(3,3),D(4,0).

(1)這是一個(gè)什么圖形;

(2)求出它的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,矩形ABCD中,BD=5cm,BC=4cm,E是邊AD上一點(diǎn),且BE = ED,P是對(duì)角線(xiàn)上任意一點(diǎn),PFBEPGAD,垂足分別為F、G.PF + PG的長(zhǎng)為(.

A. 2.5 cm B. 2.8 cm C. 3 cm D. 3.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)OBE平分∠ABCAC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖1:


(1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖2(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),則B在扇形統(tǒng)計(jì)圖中所占的圓心角的度數(shù)是.
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,ABACBC6.點(diǎn)P射線(xiàn)BA上一點(diǎn),點(diǎn)Q是AC的延長(zhǎng)線(xiàn)上一點(diǎn),且BPCQ,連接PQ,與直線(xiàn)BC相交于點(diǎn)D.

(1)如圖①,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長(zhǎng);

(2)如圖②,過(guò)點(diǎn)P作直線(xiàn)BC的垂線(xiàn),垂足為E,當(dāng)點(diǎn)P,Q分別在射線(xiàn)BA和AC的延長(zhǎng)線(xiàn)上任意地移動(dòng)過(guò)程中,線(xiàn)段BE,DE,CD中是否存在長(zhǎng)度保持不變的線(xiàn)段?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B、C、D在同一條直線(xiàn)上,△ABC△CDE都是等邊三角形.BEACF,ADCEH,

求證:△BCE≌△ACD;

求證:CF=CH;

判斷△CFH的形狀并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)與x軸交于點(diǎn)A(﹣ , 0),點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線(xiàn)的解析式;
(2)N為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時(shí),△OPN∽△COB,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案