【題目】在等邊中,點D在線段AC上,E為BC延長線上一點,且CD = CE,連接BD,連接AE.
(1)如圖1,若,求線段AD的長;
(2)如圖2,若F是線段BD的中點,連接AF,若,求證:.
【答案】(1) ;(2)見解析
【解析】
(1)過點B作BM⊥AD于點G,根據(jù)等邊三角形的性質(zhì),求出AM=3,BM=在Rt△AMB中,根據(jù),求出MD的長度,即可求出線段AD的長;
(2)延長AF至點N使得FN=AF,連接BN,先證明出△ADF≌△NBF,得出DA=BN,∠DAF=∠N,進而得出∠N=∠E,再用AAS判斷出△ABN≌△ACE即可得出結(jié)論;
(1) 過點B作BM⊥AD于點G
∵△ABC是等邊三角形,
∴AM=3,BM=
在Rt△AMB中,
∴MD=
∴AD=AM+MD=
(2) 延長AF至點N使得FN=AF,連接BN
∵ F是BD的中點
∴BF=DF
在△ADF和△NBF中:
,
∴△ADF≌△NBF(SAS),
∴DA=BN,∠DAF=∠N
∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ACB=60°
∵∠EAF=60°,
∴∠BAF=∠DAE
∵∠EAF=∠EAC+∠DAF=60°,∠ACD=∠EAC+∠E=60°,
∴∠DAF=∠E,
∴∠N=∠E
在△ABN和△ACE中:
,
∴△ABN≌△ACE(AAS),∴BN=CE,∴AD=DC,∴BD⊥AC,∴BD=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A信封中裝有兩張卡片,卡片上分別寫著4cm、2cm,B信封中裝有三張卡片,卡片上分別寫著3cm、5cm、2cm.A、B信封外有一張寫著5cm的卡片,所有卡片的形狀、大小完全相同,現(xiàn)隨機從兩個信封中各取一張卡片,與信封外的卡片放在一起,用卡片上標(biāo)明的數(shù)分別作為三條線段的長度.
(1)求這三條線段能組成三角形的概率(列舉法、列表法或樹形圖法);
(2)求這三條線段能組成直角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)豬場要出售200只生豬,現(xiàn)在市場上生豬的價格為11元/,為了估計這200只生豬能賣多少錢,該養(yǎng)豬場從中隨機抽取5只,每只豬的重量(單位:)如下:76,71,72,86,87.
(1)計算這5只生豬的平均重量;
(2)估計這200只生豬能賣多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖象上. 將線段 AB沿直線y=kx+b進行對折得到對應(yīng)線段A′B′,且點A′ 始終在直線OA上,當(dāng)線段A′B′ 與x軸有交點時,(1),m=____;(2),b的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣8x﹣k2=0(k為常數(shù)).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)x1,x2為方程的兩個實數(shù)根,且x1+2x2=7,試求出方程的兩個實數(shù)根和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠C=90°,sin∠A=,點D為邊AC上一點,若∠BDC=45°,DC=6cm,則△ABC的面積等于 ________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com