在同一平面直角坐標(biāo)系中,函數(shù)y=-xk(-2<k<2)與y  的圖象的公共點的個數(shù)是

A.0個               B.1個              C.2個              D.3個

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某一次函數(shù)的圖象經(jīng)過點(1,-2),且函數(shù)y的值隨自變量x的增大而減小,請寫出

一個滿足上述條件的函數(shù)關(guān)系式:               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


利用表格中的數(shù)據(jù),可求出+(4.123)2的近似值是(結(jié)果保留整數(shù)).

A.3

B.4

C.5

D.6

a

a2

17

289

4.123

13.038

18

324

4.243

13.416

19

361

4.359

13.784

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


甲、乙、丙三位歌手進(jìn)入“我是歌手”的冠、亞、季軍的決賽,他們通過抽簽來決定演唱順序.

(1)求甲第一位出場的概率;

(2)求甲比乙先出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


     反比例函數(shù)y (k為常數(shù),k≠0)的圖象是雙曲線.當(dāng)k>0時,雙曲線兩個分支分別在

一、三象限,在每一個象限內(nèi),yx的增大而減。ê喎Q增減性);反比例函數(shù)的圖象關(guān)于

   原點對稱(簡稱對稱性).   

   這些我們熟悉的性質(zhì),可以通過說理得到嗎?

  【嘗試說理】

我們首先對反比例函數(shù)yk>0)的增減性來進(jìn)行說理.

如圖,當(dāng)x>0時.

在函數(shù)圖象上任意取兩點A、B,設(shè)A(x1,),B(x2,),

且0<x1 x2

下面只需要比較的大。

∵0<x1 x2,∴x1-x2<0,x1 x2>0,且 k>0.

<0.即

這說明:x1 x2時,.也就是:自變量值增大了,對應(yīng)的函數(shù)值反而變小了.

即:當(dāng)x>0時,yx的增大而減。

同理,當(dāng)x<0時,yx的增大而減。

(1)試說明:反比例函數(shù)y (k>0)的圖象關(guān)于原點對稱.

   【運用推廣】

(2)分別寫出二次函數(shù)yax2 (a>0,a為常數(shù))的對稱性和增減性,并進(jìn)行說理.

對稱性:                                            ;

增減性:                                             

說理:

(3)對于二次函數(shù)yax2bxc (a>0,a,b,c為常數(shù)),請你從增減性的角度,簡要解釋為何當(dāng)x=— 時函數(shù)取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知關(guān)于x的一元二次方程3(x-1)(xm)=0的兩個根是1和2,則m的值是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程 2x2-4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,cosB=,sinC=,且AC=5,則△ABC的面積是(    )

A、       B、12           C、14             D、21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


化簡a≠0)的結(jié)果是(   )

A.  0          B.        C.         D. 

查看答案和解析>>

同步練習(xí)冊答案