【題目】某商場用36萬元購進(jìn)A、B兩種商品,銷售完后共獲利6萬元,其進(jìn)價和售價如下表:
A | B | |
進(jìn)價(元/件) | 1200 | 1000 |
售價(元/件) | 1380 | 1200 |
(注:獲利=售價-進(jìn)價)
(1) 該商場購進(jìn)A、B兩種商品各多少件?
(2) 商場第二次以原進(jìn)價購進(jìn)A、B兩種商品.購進(jìn)B種商品的件數(shù)不變,而購進(jìn)A種商品的件數(shù)是第一次的2倍,A種商品按原價出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,B種商品最低售價為每件多少元?
【答案】(1)該商場購進(jìn)A、B兩種商品分別為200件和120件.
(2)B種商品最低售價為每件1080元.
【解析】
(1)設(shè)購進(jìn)A種商品x件,B種商品y件,列出方程組即可求得 .
(2)由(1)得A商品購進(jìn)數(shù)量,再利用不等關(guān)系“第二次經(jīng)營活動獲利不少于81600元”可得出B商品的售價.
(1)設(shè)購進(jìn)A種商品x件,B種商品y件,
根據(jù)題意得
解得
答:該商場購進(jìn)A、B兩種商品分別為200件和120件.
(2)由于A商品購進(jìn)400件,獲利為
(1380﹣1200)×400=72000(元)
從而B商品售完獲利應(yīng)不少于81600﹣72000=9600(元)
設(shè)B商品每件售價為z元,則
120(z﹣1000)≥9600
解之得z≥1080
所以B種商品最低售價為每件1080元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC角平分線AE、CF交于點P,BD是△ABC的高,點H在AC上,AF=AH,下列結(jié)論:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,連接BP,則∠DBP=∠BAC﹣∠BCA;④若PH∥BD,則△ABC為等腰三角形,其中正確的結(jié)論有_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字,并完成證明;
已知:如圖,∠1=∠4,∠2=∠3,求證:AB∥CD;
證明:如圖,延長CF交AB于點G
∵∠2=∠3
∴BE∥CF( )
∴∠1= ( )
又∠1=∠4
∴∠4= ( )
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)甲、乙兩種空調(diào)共40臺.已知購進(jìn)一臺甲種空調(diào)比購進(jìn)一臺乙種空調(diào)進(jìn)價多0.2萬元;用36萬元購進(jìn)乙種空調(diào)數(shù)量是用18萬元購進(jìn)甲種空調(diào)數(shù)量的4倍.請解答下列問題:
(1)求甲、乙兩種空調(diào)每臺進(jìn)價各是多少萬元?
(2)若商場預(yù)計投入資金不多于11.5萬元用于購買甲、乙兩種空調(diào),且購進(jìn)甲種空調(diào)至少14臺,商場有哪幾種購進(jìn)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,⊙O過BC的中點D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過反比例函數(shù)y= 的圖象上的點P1(1,y1),P2(2,y2),…Pn(n,yn)…作x軸的垂線,垂足分別為A1 , A2 , …,An…,連接A1P2 , A2P3 , …,An-1Pn , …,再以A1P1 , A1P2為一組鄰邊畫一個平行四邊形A1P1B1P2 , 以A 2P2 , A2P3為一組鄰邊畫一個平行四邊形A2P2B2P3 , 點B2的縱坐標(biāo)是.依此類推,則點Bn的縱坐標(biāo)是.(結(jié)果用含n代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ 與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C,點D與點C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式,并直接寫出點D的坐標(biāo);
(2)如圖1,點P從點A出發(fā),以每秒1個單位長度的速度沿A→B勻速運動,到達(dá)點B時停止運動.以AP為邊作等邊△APQ(點Q在x軸上方).設(shè)點P在運動過程中,△APQ與四邊形AOCD重疊部分的面積為S,點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,在第二象限內(nèi)存在點M,使得以M、O、A為頂點的三角形與△AOC相似.請直接寫出所有符合條件的點M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com