(2013•咸寧)如圖,正方形ABCD是一塊綠化帶,其中陰影部分EOFB,GHMN都是正方形的花圃.已知自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥在花圃上的概率為( 。
分析:求得陰影部分的面積與正方形ABCD的面積的比即可求得小鳥在花圃上的概率;
解答:解:設(shè)正方形的ABCD的邊長為a,
則BF=
1
2
BC=
a
2
,AN=NM=MC=
2
3
a,
∴陰影部分的面積為(
a
2
2+(
2
3
a)2=
17
36
a2,
∴小鳥在花圃上的概率為
17
36
a2
a2
=
17
36

故選C.
點評:本題考查了正方形的性質(zhì)及幾何概率,關(guān)鍵是表示出大正方形的邊長,從而表示出兩個陰影正方形的邊長,最后表示出面積.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•咸寧)如圖,過正五邊形ABCDE的頂點A作直線l∥BE,則∠1的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•咸寧)如圖,在平面直角坐標系中,以O(shè)為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于
1
2
MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數(shù)量關(guān)系為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•咸寧)如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點P是AB邊上的動點,過點P作⊙O的一條切線PQ(點Q為切點),則切線PQ的最小值為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•咸寧)如圖,在平面直角坐標系中,直線y=2x+b(b<0)與坐標軸交于A,B兩點,與雙曲線y=
kx
(x>0)交于D點,過點D作DC⊥x軸,垂足為G,連接OD.已知△AOB≌△ACD.
(1)如果b=-2,求k的值;
(2)試探究k與b的數(shù)量關(guān)系,并寫出直線OD的解析式.

查看答案和解析>>

同步練習冊答案