如圖,AB為量角器(半圓O)的直徑,等腰直角△BCD的斜邊BD交量角器邊緣于點(diǎn)G,直角邊CD切量角器于讀數(shù)為60°的點(diǎn)E處(即弧AE的度數(shù)為60°),第三邊交量角器邊緣于點(diǎn)F處.
(1)求量角器在點(diǎn)G處的讀數(shù)α(0°<α<90°);
(2)若AB=10cm,求陰影部分面積.
(1)30° ;(2)-
【解析】
試題分析:(1)連接OE,OF,先根據(jù)切線的性質(zhì)可得OE⊥CD,再根據(jù)BD為等腰直角△BCD的斜邊,可得BC⊥CD,∠D=∠CBD=45°,即可證得OE∥BC,則有∠ABC=∠AOE=60°,即得∠ABG的度數(shù),從而可以求得結(jié)果;
(2)先證得△OBF為正三角形,先根據(jù)陰影部分的面積等于扇形OBF的面積-三角形OBF的面積,結(jié)合扇形的面積公式及三角形的面積公式求解即可.
(1)連接OE,OF
∵CD切半圓O于點(diǎn)E
∴OE⊥CD,
∵BD為等腰直角△BCD的斜邊,
∴BC⊥CD,∠D=∠CBD=45°,
∴OE∥BC
∴∠ABC=∠AOE=60°,
∴∠ABG=∠ABC-∠CBD=60°-45°=15°
∴弧AG的度數(shù)=2∠ABG=30°,
∴量角器在點(diǎn)G處的讀數(shù)α=弧AG的度數(shù)=30° ;
(2)∵OF=OB=0.5AB=5cm,∠ABC=60°,
∴△OBF為正三角形,∠BOF=60°,
∴S扇形=(cm2),S△OBF=
∴S陰影=S扇形-S△OBF=-
考點(diǎn):切線的性質(zhì),等腰直角三角形的性質(zhì),圓周角定理,扇形、三角形的面積公式
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性較強(qiáng),是中考常見(jiàn)題,熟練掌握?qǐng)A的相關(guān)性質(zhì)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BE |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com