如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點E、F,分別從點B、點A同時出發(fā),點E沿線段BA以1cm/s的速度向點A運動,點F沿折線A-D-C以2cm/s的速度向點C運動,設行進過程中點E離開點B的時間為t(秒).

(1)當t為何值時,線段EF與BC平行?

(2)設1<t<2,當t為何值時,EF與半圓相切?

(3)當1≤t<2時,設EF與AC相交于點P,問E、F運動時,點P的位置是否發(fā)生變化?若發(fā)生變化,說明理由,若不發(fā)生變化,請予以證明,并求AP∶PC的值.

答案:
解析:

  (1)設E、F出發(fā)后,運動了t秒時,有EF∥BC,則BE=t,CF=4-2t,即有t=4-2t,t=,所以當t為秒時,線段EF與BC平行.

  (2)設E、F出發(fā)后運動了t秒時,EF與半圓相切,過點F作KF∥BC交AB于K,則BE=t,CF=4-2t,EK=t-(4-2t)=3t-4,EF=FB+FC=t+(4-2t)=4-t.又因為EF2=EK2+FK2,所以(4-t)2=(3t-4)2+22,2t2-4t+1=0,解得t=.又1<t<2,所以t=.所以,當t為秒時,EF與半圓相切.

  (3)當1≤t<2時,點P的位置不會發(fā)生變化.證明:設1≤t<2時,E、F出發(fā)后運動了t秒鐘時,EF的位置如圖所示,則有BE=t,AE=2-t,CF=4-2t,所以.又因為AB∥DC,所以△AEP∽△CFP.

  所以,即點P的位置與t的取值無關,所以當1≤t<2時,點P的位置不會發(fā)生變化,且AP∶PC的值為


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案