【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.如圖,⊙O是△ABC的內(nèi)切圓,與三邊分別相切于點(diǎn)E、F、G.

(1)求證:內(nèi)切圓的半徑r=1;

(2)求tan∠OAG的值.

【答案】(1)證明見(jiàn)解析(2)

【解析】

(1)如圖連結(jié)OE,OF,OG.由 OABC的內(nèi)切圓,∠C=90°,得到四邊形CEOF是正方形,根據(jù)切線長(zhǎng)定理列方程得到結(jié)果;
(2)連結(jié)OA,在RtAOG中,由銳角三角函數(shù)得到結(jié)果.

(1)證明:如圖連結(jié)OE,OF,OG.

∵⊙OABC的內(nèi)切圓,∠C=90°,

∴四邊形CEOF是正方形,

CE=CF=r.

又∵AG=AE=3﹣r,BG=BF=4﹣r,AG+BG=5,

(3﹣r)+(4﹣r)=5.

解得r=1;

(2)解:連結(jié)OA,在RtAOG中,

r=1,AG=3﹣r=2,

tanOAG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(1)已知:如圖①,在中,OA=OB,OC=OD,求證:①AC=BD;②

2)如圖②,在中,若OA=OB,OC=OD,,則ACBD間的等量關(guān)系式為 ;的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了慶祝新中國(guó)成立70周年,某校組織八年級(jí)全體學(xué)生參加“恰同學(xué)少年,憶崢嶸歲月”新中國(guó)成立70周年知識(shí)競(jìng)賽活動(dòng).將隨機(jī)抽取的部分學(xué)生成績(jī)進(jìn)行整理后分成5組,5060分()的小組稱(chēng)為“學(xué)童”組,6070()的小組稱(chēng)為“秀才”組,7080()的小組稱(chēng)為“舉人”組,8090()的小組稱(chēng)為“進(jìn)士”組,90100()的小組稱(chēng)為“翰林”組,并繪制了不完整的頻數(shù)分布直方圖如下,請(qǐng)結(jié)合提供的信息解答下列問(wèn)題:

1)若“翰林”組成績(jī)的頻率是12.5%,請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

2)在此次比賽中,抽取學(xué)生的成績(jī)的中位數(shù)在 組;

3)學(xué)校決定對(duì)成績(jī)?cè)?/span>70100()的學(xué)生進(jìn)行獎(jiǎng)勵(lì),若八年級(jí)共有336名學(xué)生,請(qǐng)通過(guò)計(jì)算說(shuō)明,大約有多少名學(xué)生獲獎(jiǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PB為O的切線,B為切點(diǎn),直線PO交于點(diǎn)E、F,過(guò)點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交O于點(diǎn)A,延長(zhǎng)AO與O交于點(diǎn)C,連接BC,AF.

(1)求證:直線PA為O的切線;

(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;

(3)若BC=6,tanF=,求cosACB的值和線段PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,ABACBCA=65°,作CDAB,并與O相交于點(diǎn)D,連接BD,則∠DBC的大小為

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O00),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)OB,C的對(duì)應(yīng)點(diǎn)分別為DE,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張師傅駕車(chē)從甲地去乙地,途中在加油站加了一次油,加油時(shí),車(chē)載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車(chē)都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.

(1)求張師傅加油前油箱剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系式;

(2)求出a的值;

(3)求張師傅途中加油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20028月在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長(zhǎng)直角邊為b,那么(a+b)2的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案