如圖,直角梯形ABCD的頂點在相互平行的l1、l2和l3三條直線上,l1、l2之間的距離為2,l2、l3之間的距精英家教網(wǎng)離為1,AD∥BC,AB⊥BC,AB=BC,則該梯形的高為
 
分析:如圖,作AE⊥BD,BF⊥CF,交點為E、F,可得△AEB≌△CFB,則BE=BF=1,則AE=CF=2,所以,根據(jù)勾股定理即可解答;
解答:精英家教網(wǎng)解:作AE⊥BD,BF⊥CF,垂足為E、F,
∴AE=2,BF=1,
∵∠CBF+∠CBE=∠ABE+∠CBE=90°,
∴∠CBF=∠ABE,
又∵AB=BC,
∴Rt△AEB≌Rt△CFB,
∴BE=BF=1,
∴AB=
AE2+BE2
=
22+12
=
5
;
故答案為:
5
點評:本題主要考查了相似三角形的判定與性質(zhì)和三角形面積公式,作輔助線構(gòu)建全等三角形,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案