【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,人們有吃粽子的習(xí)慣.某校數(shù)學(xué)興趣小組為了了解本校學(xué)生喜愛粽子的情況,隨機(jī)抽取了50名同學(xué)進(jìn)行問卷調(diào)查,經(jīng)過統(tǒng)計(jì)后繪制了兩幅尚不完整的統(tǒng)計(jì)圖(注:每一位同學(xué)在任何一種分類統(tǒng)計(jì)中只有一種選擇)

請(qǐng)根據(jù)統(tǒng)計(jì)圖完成下列問題:
(1)扇形統(tǒng)計(jì)圖中,“很喜歡”所對(duì)應(yīng)的圓心角為 ;條形統(tǒng)計(jì)圖中,喜歡“糖餡”粽子的人數(shù)為
(2)若該校學(xué)生人數(shù)為800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中“很喜歡”和“比較喜歡”粽子的人數(shù)之和;
(3)小軍最愛吃肉餡粽子,小麗最愛吃糖餡粽子.某天小霞帶了重量、外包裝完全一樣的肉餡、糖餡、棗餡、海鮮餡四種粽子各一只,讓小軍、小麗每人各選一只.請(qǐng)用樹狀圖或列表法求小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子的概率.

【答案】
(1)144;3 
(2)

解:學(xué)生有800人,估計(jì)該校學(xué)生中“很喜歡”和“比較喜歡”粽子的人數(shù)之和為800×(1﹣25%)=600(人);


(3)

解:

肉餡、糖餡、棗餡、海鮮餡四種粽子分別用A、B、C、D表示,畫圖如下:

∵共12種等可能的結(jié)果,其中小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子有4種,

∴P(小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子)==


【解析】解:(1)扇形統(tǒng)計(jì)圖中,“很喜歡”所對(duì)應(yīng)的圓心角為360°×40%=144度;條形統(tǒng)計(jì)圖中,喜歡“糖餡”粽子的人數(shù)為 3人;
【考點(diǎn)精析】通過靈活運(yùn)用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中, =a,點(diǎn)G,H分別在邊AB,DC上,且HA=HG,點(diǎn)E為AB邊上的一個(gè)動(dòng)點(diǎn),連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當(dāng)DH=DA時(shí),填空:∠HGA=度;
(2)如圖1,當(dāng)DH=DA時(shí),若EF∥HG,求∠AHE的度數(shù),并求此時(shí)的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點(diǎn)P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B (2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕,小東的父母準(zhǔn)備購買若干個(gè)粽子和咸鴨蛋(每個(gè)粽子的價(jià)格相同,每個(gè)咸鴨蛋的價(jià)格相同).已知粽子的價(jià)格比咸鴨蛋的價(jià)格貴1.8元,花30元購買粽子的個(gè)數(shù)與花12元購買咸鴨蛋的個(gè)數(shù)相同,求粽子與咸鴨蛋的價(jià)格各多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只螞蟻從O點(diǎn)出發(fā),沿著扇形OAB的邊緣勻速爬行一周,當(dāng)螞蟻運(yùn)動(dòng)的時(shí)間為t時(shí),螞蟻與O點(diǎn)的距離為s,則s關(guān)于t的函數(shù)圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx+(a≠0)經(jīng)過點(diǎn)A(﹣1,0)和B(3,0).

(1)求拋物線C1的解析式,并寫出其頂點(diǎn)C的坐標(biāo);
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時(shí)得到拋物線C2 , 此時(shí)點(diǎn)A,C分別平移到點(diǎn)D,E處.設(shè)點(diǎn)F在拋物線C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,設(shè)點(diǎn)M是線段BC上一動(dòng)點(diǎn),EN⊥EM交直線BF于點(diǎn)N,點(diǎn)P為線段MN的中點(diǎn),當(dāng)點(diǎn)M從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí):①tan∠ENM的值如何變化?請(qǐng)說明理由;②點(diǎn)M到達(dá)點(diǎn)C時(shí),直接寫出點(diǎn)P經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲經(jīng)銷商庫存有1200套A品牌服裝,每套進(jìn)價(jià)400元,每套售價(jià)500元,一年內(nèi)可賣完,現(xiàn)市場流行B品牌服裝,每套進(jìn)價(jià)300元,每套售價(jià)600元,但一年內(nèi)只允許經(jīng)銷商一次性訂購B品牌服裝,一年內(nèi)B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動(dòng)資金可用,只有低價(jià)轉(zhuǎn)讓A品牌服裝,用轉(zhuǎn)讓來的資金購進(jìn)B品牌服裝,并銷售,經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達(dá)成轉(zhuǎn)讓協(xié)議,轉(zhuǎn)讓價(jià)格y(元/套)與轉(zhuǎn)讓數(shù)量x(套)之間的函數(shù)關(guān)系式為y=﹣x+360(100≤x≤1200),若甲經(jīng)銷商轉(zhuǎn)讓x套A品牌服裝,一年內(nèi)所獲總利潤為W(元).
(1)求轉(zhuǎn)讓后剩余的A品牌服裝的銷售款Q1(元)與x(套)之間的函數(shù)關(guān)系式;
(2)求B品牌服裝的銷售款Q2(元)與x(套)之間的函數(shù)關(guān)系式;
(3)求W(元)與x(套)之間的函數(shù)關(guān)系式,并求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)地均勻的小正方體,六個(gè)面分別有數(shù)字“1”、“2”、“3”、“4”、“5”、“6”,同時(shí)投擲兩枚,觀察朝上一面的數(shù)字.
(1)求數(shù)字“1”出現(xiàn)的概率;
(2)求兩個(gè)數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)B(0,8)為端點(diǎn)的射線BG∥x軸,點(diǎn)A是射線BG上一個(gè)動(dòng)點(diǎn)(點(diǎn)A與點(diǎn)B不重合),在射線AG上取AD=OB,作線段AD的垂直平分線,垂足為E,且與x軸交于點(diǎn)F,過點(diǎn)A作AC⊥OA,交射線EF于點(diǎn)C,連接OC、CD.設(shè)點(diǎn)A的橫坐標(biāo)為t.

(1)用含t的式子表示點(diǎn)E的坐標(biāo)為 ;
(2)當(dāng)t為何值時(shí),∠OCD=180°?
(3)當(dāng)點(diǎn)C與點(diǎn)F不重合時(shí),設(shè)△OCF的面積為S,求S與t之間的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案