【題目】如圖:拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?
【答案】
(1)解:∵OC=4,OD=2,
∴DM=6,
∴點(diǎn)M(2,6),
設(shè)y=a(x﹣2)2+6,代入(0,4)得:a=﹣ ,
∴該拋物線解析式為y=﹣ (x﹣2)2+6;
(2)解:設(shè)點(diǎn)P(x,﹣ (x﹣2)2+6),即(x,﹣ x2+2x+4),x>0,
過(guò)點(diǎn)P作x軸的垂線,交x軸于點(diǎn)E,
則PE=﹣ x2+2x+4,DE=x﹣2,
S= x(﹣ x2+2x+4+4)﹣ ×2×4﹣ (x﹣2)(﹣ x2+2x+4),
即S=﹣ x2+4x=﹣ (x﹣4)2+8,
∴當(dāng)x=4時(shí),S有最大值為8.
【解析】(1)由OC與OD的長(zhǎng),求出MD的長(zhǎng),確定出M坐標(biāo),設(shè)y=a(x﹣2)2+6,把C坐標(biāo)代入求出a的值,即可確定出拋物線解析式;(2)由拋物線解析式設(shè)出P坐標(biāo),過(guò)點(diǎn)P做x軸的垂線,交x軸于點(diǎn)E,利用表示出的點(diǎn)P的坐標(biāo)確定出線段PE、DE的長(zhǎng),用梯形OCPE的面積減去直角三角形OCD的面積和直角三角形PDE的面積,進(jìn)而得出S與x的函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S最大值時(shí)x的值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)了A,B兩種家用電器,相關(guān)信息如下表:
家用電器 | 進(jìn)價(jià)(元/件) | 售價(jià)(元/件) |
A | m+200 | 1800 |
B | m | 1700 |
已知用6000元購(gòu)進(jìn)的A種電器件數(shù)與用5000元購(gòu)進(jìn)的B種電器件數(shù)相同.
(1)求表中m的值.
(2)由于A,B兩種家用電器熱銷(xiāo),該商店計(jì)劃用不超過(guò)23000元的資金再購(gòu)進(jìn)A,B兩種電器總件數(shù)共20件,且獲利不少于13300元.請(qǐng)問(wèn):有幾種進(jìn)貨方案?哪一種方案才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC= ,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以相同的速度在線段AC上由C向A運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEF(P、Q、E、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請(qǐng)?zhí)骄縎是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,5),B(4,2),點(diǎn)P在x軸上,當(dāng)AP+BP最小時(shí),點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑,即損矩形外接圓的直徑.如圖,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,點(diǎn)D是菱形ACEF對(duì)角線的交點(diǎn),連接BD.若∠DBC=60°,∠ACB=15°,BD=,則菱形ACEF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糧油超市平時(shí)每天都將一定數(shù)量的某些品種的糧食進(jìn)行包裝以便出售,已知每天包裝大黃米的質(zhì)量是包裝江米質(zhì)量的倍,且每天包裝大黃米和江米的質(zhì)量之和為45千克.
(1)求平均每天包裝大黃米和江米的質(zhì)量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復(fù)到原來(lái)每天的包裝質(zhì)量.分別求出在這20天內(nèi)每天包裝大黃米和江米的質(zhì)量隨天數(shù)變化的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)假設(shè)該超市每天都會(huì)將當(dāng)天包裝后的大黃米和江米全部售出,已知大黃米成本價(jià)為每千克7.9元,江米成本每千克9.5元,二者包裝費(fèi)用平均每千克均為0.5元,大黃米售價(jià)為每千克10元,江米售價(jià)為每千克12元,那么在這20天中有哪幾天銷(xiāo)售大黃米和江米的利潤(rùn)之和大于120元?[總利潤(rùn)=售價(jià)額﹣成本﹣包裝費(fèi)用].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點(diǎn)H,延長(zhǎng)DA交GF于點(diǎn)K.若正方形ABCD邊長(zhǎng)為 ,則AK= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校以“我最喜愛(ài)的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其它項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動(dòng)項(xiàng)目 | 頻數(shù)(人數(shù)) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其它 | 12 | 0.10 |
請(qǐng)根據(jù)以上圖表信息解答下列問(wèn)題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項(xiàng)的30名學(xué)生中,隨機(jī)抽取3名學(xué)生作為代表進(jìn)行投籃測(cè)試,則其中某位學(xué)生被選中的概率是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com