如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯誤的是(     ).
A.AB∥EF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似.
D.EG=FH
C.

試題分析:根據(jù)梯形的中位線的性質(zhì)進行解答.
在梯形ABCD中,AB∥DC,EF是梯形的中位線,所以AB∥EF,故A正確;
因為EF是梯形ABCD的中位線,所以EG=CD,GF=AB,故EF=CD+AB,即AB+DC=2EF,故B正確.
在四邊形AEFB和四邊形ABCD中,對應(yīng)角相等,對應(yīng)邊不成比例,因此四邊形AEFB和四邊形ABCD不相似.故C錯誤;
由于EG、HF分別是△ACD、△BCD的中位線,知EG=CD,HF=CD,所以EG=FH,故D正確.
故選C.
考點: 梯形的中位線.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測量校園水平地面上一棵樹的高度,數(shù)學(xué)興趣小組利用一根標桿、皮尺,設(shè)計如圖所示的測量方案.已知測量同學(xué)眼睛A、標桿頂端F、樹的頂端E在同一直線上,此同學(xué)眼睛距地面1.6米,標桿為3.1米,且BC=1米,CD=5米,請你根據(jù)所給出的數(shù)據(jù)求樹高ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是邊長為6cm的等邊三角形,動點P,Q同時從A、B兩點出發(fā),分別沿AB,BC方向勻速運動,其中點P運動的速度是1cm/s,點Q運動的速度是2cm/s,當點Q到達點C時,P、Q兩點都停止運動,設(shè)運動時間為t(s),

解答下列問題:
(1)當為何值時,△BPQ為直角三角形;
(2)設(shè)△BPQ的面積為S(cm2),求S與的函數(shù)關(guān)系式;
(3)作QR∥BA交AC于點R,連結(jié)PR,當為何值時,△APR∽△PRQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

,則___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知相似且對應(yīng)邊上的高之比為,若的周長為8,則的周長為              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,矩形ABCD中,AB=21,AD=12,E是CD邊上的一點,CE=5,M是BC邊上的中點,動點P從點A出發(fā),沿AB邊以每秒1個單位長度的速度向終點B運動,連結(jié)PM.設(shè)動點P的運動時間是t秒.

(1)求線段AE的長;
(2)當△ADE與△PBM相似時,求t的值;
(3)如圖2,連接EP,過點P作PH⊥AE于H.①當EP平分四邊形PMEH的面積時,求t的值;②以PE為對稱軸作線段BC的軸對稱圖形B′C′,當線段B′C′與線段AE有公共點時,寫出t的取值范圍(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠C=90°,P是斜邊上一定點,過點P作直線與一直角邊交于點Q使圖中出現(xiàn)兩個相似三角形,這樣的點Q有 (    )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結(jié)CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結(jié)DF.給出以下四個結(jié)論:①;②點F是GE的中點;③AF=AB;④S△ABC ="5" S△BDF,其中正確的結(jié)論序號是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=3,BC=4,點P在BC邊上運動,連接DP,過點A作AE⊥DP,垂足為E,設(shè)DP=x,AE=y,則能反映y與x之間函數(shù)關(guān)系的大致圖象是


A.               B.             C.               D.

查看答案和解析>>

同步練習冊答案