【題目】如圖,小麗蕩秋千,秋千鏈子的長OA為2.5米,秋千向兩邊擺動的角度相同,擺動的水平距離AB為3米,則秋千擺至最高位置時(shí)與最低價(jià)位置時(shí)的高度之差(即CD)為米.
【答案】0.5
【解析】解:∵點(diǎn)C為弧AB的中點(diǎn),O為圓心 由垂徑定理知:AB⊥OC,AD=BD= AB=1.5米,
在Rt△OAD中,根據(jù)勾股定理,OD= =2(米),
∴CD=OC﹣OD=2.5﹣2=0.5(米);
所以答案是0.5.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和垂徑定理的推論的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條。煌普2 :圓的兩條平行弦所夾的弧相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將頂點(diǎn)為P(1,﹣2),且過原點(diǎn)的拋物線y的一部分沿x軸翻折并向右平移2個(gè)單位長度,得到拋物線y1 , 其頂點(diǎn)為P1 , 然后將拋物線y1沿x軸翻折并向右平移2個(gè)單位長度,得到拋物線y2 , 其頂點(diǎn)為P2;…,如此進(jìn)行下去,直至得到拋物線y2016 , 則點(diǎn)P2016坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形中,AB=AC,BC=4,D為BC的中點(diǎn),點(diǎn)E、F在線段AD上,tan∠ABC=3,則陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題 某服裝店用4500元購進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購進(jìn)第二批該款式的襯衫,但每件進(jìn)價(jià)比第一批襯衫的每件進(jìn)價(jià)少了10元,且進(jìn)貨量是第一次進(jìn)貨量的一半,求第一批購進(jìn)這種襯衫每件的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=3,OC=2,將矩形OABC向上平移4個(gè)單位得到矩形O1A1B1C1 .
(1)若反比例函數(shù)y= 和y= 的圖象分別經(jīng)過點(diǎn)B、B1 , 求k1和k2的值;
(2)將矩形O1A1B1C1向左平移得到O2A2B2C2 , 當(dāng)點(diǎn)O2、B2在反比例函數(shù)y= 的圖象上時(shí),求平移的距離和k3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某水上樂園有一個(gè)滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°
(1)求調(diào)整后的滑梯AD的長度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③
…
觀察上述等式,猜想:對任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對∠A證明你的猜想;
(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的“中國學(xué)生營養(yǎng)日”活動中,設(shè)計(jì)了抽獎環(huán)節(jié):在一只不透明的箱子中有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個(gè)球,恰好是紅球就能中獎,則中獎的概率是多少?
(2)同時(shí)摸出兩個(gè)球,都是紅球 就能中特別獎,則中特別獎的概率是多少?(要求畫樹狀圖或列表求解)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com